Metamath Proof Explorer


Theorem sin4t3rdpi

Description: The sine of 4 x. ( _pi / 3 ) is -u ( sqrt 3 ) / 2 . (Contributed by SN, 19-Nov-2025)

Ref Expression
Assertion sin4t3rdpi ( sin ‘ ( 4 · ( π / 3 ) ) ) = - ( ( √ ‘ 3 ) / 2 )

Proof

Step Hyp Ref Expression
1 picn π ∈ ℂ
2 3cn 3 ∈ ℂ
3 3ne0 3 ≠ 0
4 1 2 3 divcli ( π / 3 ) ∈ ℂ
5 sinppi ( ( π / 3 ) ∈ ℂ → ( sin ‘ ( ( π / 3 ) + π ) ) = - ( sin ‘ ( π / 3 ) ) )
6 4 5 ax-mp ( sin ‘ ( ( π / 3 ) + π ) ) = - ( sin ‘ ( π / 3 ) )
7 3rdpwhole ( π ∈ ℂ → ( ( π / 3 ) + π ) = ( 4 · ( π / 3 ) ) )
8 1 7 ax-mp ( ( π / 3 ) + π ) = ( 4 · ( π / 3 ) )
9 8 fveq2i ( sin ‘ ( ( π / 3 ) + π ) ) = ( sin ‘ ( 4 · ( π / 3 ) ) )
10 sincos3rdpi ( ( sin ‘ ( π / 3 ) ) = ( ( √ ‘ 3 ) / 2 ) ∧ ( cos ‘ ( π / 3 ) ) = ( 1 / 2 ) )
11 10 simpli ( sin ‘ ( π / 3 ) ) = ( ( √ ‘ 3 ) / 2 )
12 11 negeqi - ( sin ‘ ( π / 3 ) ) = - ( ( √ ‘ 3 ) / 2 )
13 6 9 12 3eqtr3i ( sin ‘ ( 4 · ( π / 3 ) ) ) = - ( ( √ ‘ 3 ) / 2 )