| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elioore |
⊢ ( 𝐴 ∈ ( π (,) ( 2 · π ) ) → 𝐴 ∈ ℝ ) |
| 2 |
|
picn |
⊢ π ∈ ℂ |
| 3 |
2
|
addlidi |
⊢ ( 0 + π ) = π |
| 4 |
3
|
eqcomi |
⊢ π = ( 0 + π ) |
| 5 |
2
|
2timesi |
⊢ ( 2 · π ) = ( π + π ) |
| 6 |
4 5
|
oveq12i |
⊢ ( π (,) ( 2 · π ) ) = ( ( 0 + π ) (,) ( π + π ) ) |
| 7 |
6
|
eleq2i |
⊢ ( 𝐴 ∈ ( π (,) ( 2 · π ) ) ↔ 𝐴 ∈ ( ( 0 + π ) (,) ( π + π ) ) ) |
| 8 |
|
pire |
⊢ π ∈ ℝ |
| 9 |
|
0re |
⊢ 0 ∈ ℝ |
| 10 |
|
iooshf |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ π ∈ ℝ ) ∧ ( 0 ∈ ℝ ∧ π ∈ ℝ ) ) → ( ( 𝐴 − π ) ∈ ( 0 (,) π ) ↔ 𝐴 ∈ ( ( 0 + π ) (,) ( π + π ) ) ) ) |
| 11 |
9 8 10
|
mpanr12 |
⊢ ( ( 𝐴 ∈ ℝ ∧ π ∈ ℝ ) → ( ( 𝐴 − π ) ∈ ( 0 (,) π ) ↔ 𝐴 ∈ ( ( 0 + π ) (,) ( π + π ) ) ) ) |
| 12 |
8 11
|
mpan2 |
⊢ ( 𝐴 ∈ ℝ → ( ( 𝐴 − π ) ∈ ( 0 (,) π ) ↔ 𝐴 ∈ ( ( 0 + π ) (,) ( π + π ) ) ) ) |
| 13 |
7 12
|
bitr4id |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 ∈ ( π (,) ( 2 · π ) ) ↔ ( 𝐴 − π ) ∈ ( 0 (,) π ) ) ) |
| 14 |
1 13
|
syl |
⊢ ( 𝐴 ∈ ( π (,) ( 2 · π ) ) → ( 𝐴 ∈ ( π (,) ( 2 · π ) ) ↔ ( 𝐴 − π ) ∈ ( 0 (,) π ) ) ) |
| 15 |
14
|
ibi |
⊢ ( 𝐴 ∈ ( π (,) ( 2 · π ) ) → ( 𝐴 − π ) ∈ ( 0 (,) π ) ) |
| 16 |
|
sinq12gt0 |
⊢ ( ( 𝐴 − π ) ∈ ( 0 (,) π ) → 0 < ( sin ‘ ( 𝐴 − π ) ) ) |
| 17 |
15 16
|
syl |
⊢ ( 𝐴 ∈ ( π (,) ( 2 · π ) ) → 0 < ( sin ‘ ( 𝐴 − π ) ) ) |
| 18 |
1
|
recnd |
⊢ ( 𝐴 ∈ ( π (,) ( 2 · π ) ) → 𝐴 ∈ ℂ ) |
| 19 |
|
sinmpi |
⊢ ( 𝐴 ∈ ℂ → ( sin ‘ ( 𝐴 − π ) ) = - ( sin ‘ 𝐴 ) ) |
| 20 |
18 19
|
syl |
⊢ ( 𝐴 ∈ ( π (,) ( 2 · π ) ) → ( sin ‘ ( 𝐴 − π ) ) = - ( sin ‘ 𝐴 ) ) |
| 21 |
17 20
|
breqtrd |
⊢ ( 𝐴 ∈ ( π (,) ( 2 · π ) ) → 0 < - ( sin ‘ 𝐴 ) ) |
| 22 |
1
|
resincld |
⊢ ( 𝐴 ∈ ( π (,) ( 2 · π ) ) → ( sin ‘ 𝐴 ) ∈ ℝ ) |
| 23 |
22
|
lt0neg1d |
⊢ ( 𝐴 ∈ ( π (,) ( 2 · π ) ) → ( ( sin ‘ 𝐴 ) < 0 ↔ 0 < - ( sin ‘ 𝐴 ) ) ) |
| 24 |
21 23
|
mpbird |
⊢ ( 𝐴 ∈ ( π (,) ( 2 · π ) ) → ( sin ‘ 𝐴 ) < 0 ) |