Metamath Proof Explorer


Theorem sinq34lt0t

Description: The sine of a number strictly between _pi and 2 x. _pi is negative. (Contributed by NM, 17-Aug-2008)

Ref Expression
Assertion sinq34lt0t Aπ2πsinA<0

Proof

Step Hyp Ref Expression
1 elioore Aπ2πA
2 picn π
3 2 addlidi 0+π=π
4 3 eqcomi π=0+π
5 2 2timesi 2π=π+π
6 4 5 oveq12i π2π=0+ππ+π
7 6 eleq2i Aπ2πA0+ππ+π
8 pire π
9 0re 0
10 iooshf Aπ0πAπ0πA0+ππ+π
11 9 8 10 mpanr12 AπAπ0πA0+ππ+π
12 8 11 mpan2 AAπ0πA0+ππ+π
13 7 12 bitr4id AAπ2πAπ0π
14 1 13 syl Aπ2πAπ2πAπ0π
15 14 ibi Aπ2πAπ0π
16 sinq12gt0 Aπ0π0<sinAπ
17 15 16 syl Aπ2π0<sinAπ
18 1 recnd Aπ2πA
19 sinmpi AsinAπ=sinA
20 18 19 syl Aπ2πsinAπ=sinA
21 17 20 breqtrd Aπ2π0<sinA
22 1 resincld Aπ2πsinA
23 22 lt0neg1d Aπ2πsinA<00<sinA
24 21 23 mpbird Aπ2πsinA<0