| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sltsubsubbd.1 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
| 2 |
|
sltsubsubbd.2 |
⊢ ( 𝜑 → 𝐵 ∈ No ) |
| 3 |
|
sltsubsubbd.3 |
⊢ ( 𝜑 → 𝐶 ∈ No ) |
| 4 |
|
sltsubsubbd.4 |
⊢ ( 𝜑 → 𝐷 ∈ No ) |
| 5 |
3 4 1 2
|
sltsubsub2bd |
⊢ ( 𝜑 → ( ( 𝐶 -s 𝐷 ) <s ( 𝐴 -s 𝐵 ) ↔ ( 𝐵 -s 𝐴 ) <s ( 𝐷 -s 𝐶 ) ) ) |
| 6 |
5
|
notbid |
⊢ ( 𝜑 → ( ¬ ( 𝐶 -s 𝐷 ) <s ( 𝐴 -s 𝐵 ) ↔ ¬ ( 𝐵 -s 𝐴 ) <s ( 𝐷 -s 𝐶 ) ) ) |
| 7 |
1 2
|
subscld |
⊢ ( 𝜑 → ( 𝐴 -s 𝐵 ) ∈ No ) |
| 8 |
3 4
|
subscld |
⊢ ( 𝜑 → ( 𝐶 -s 𝐷 ) ∈ No ) |
| 9 |
|
slenlt |
⊢ ( ( ( 𝐴 -s 𝐵 ) ∈ No ∧ ( 𝐶 -s 𝐷 ) ∈ No ) → ( ( 𝐴 -s 𝐵 ) ≤s ( 𝐶 -s 𝐷 ) ↔ ¬ ( 𝐶 -s 𝐷 ) <s ( 𝐴 -s 𝐵 ) ) ) |
| 10 |
7 8 9
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐴 -s 𝐵 ) ≤s ( 𝐶 -s 𝐷 ) ↔ ¬ ( 𝐶 -s 𝐷 ) <s ( 𝐴 -s 𝐵 ) ) ) |
| 11 |
4 3
|
subscld |
⊢ ( 𝜑 → ( 𝐷 -s 𝐶 ) ∈ No ) |
| 12 |
2 1
|
subscld |
⊢ ( 𝜑 → ( 𝐵 -s 𝐴 ) ∈ No ) |
| 13 |
|
slenlt |
⊢ ( ( ( 𝐷 -s 𝐶 ) ∈ No ∧ ( 𝐵 -s 𝐴 ) ∈ No ) → ( ( 𝐷 -s 𝐶 ) ≤s ( 𝐵 -s 𝐴 ) ↔ ¬ ( 𝐵 -s 𝐴 ) <s ( 𝐷 -s 𝐶 ) ) ) |
| 14 |
11 12 13
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐷 -s 𝐶 ) ≤s ( 𝐵 -s 𝐴 ) ↔ ¬ ( 𝐵 -s 𝐴 ) <s ( 𝐷 -s 𝐶 ) ) ) |
| 15 |
6 10 14
|
3bitr4d |
⊢ ( 𝜑 → ( ( 𝐴 -s 𝐵 ) ≤s ( 𝐶 -s 𝐷 ) ↔ ( 𝐷 -s 𝐶 ) ≤s ( 𝐵 -s 𝐴 ) ) ) |