Step |
Hyp |
Ref |
Expression |
1 |
|
lltropt |
⊢ ( 𝑋 ∈ No → ( L ‘ 𝑋 ) <<s ( R ‘ 𝑋 ) ) |
2 |
1
|
adantr |
⊢ ( ( 𝑋 ∈ No ∧ 𝑌 ∈ No ) → ( L ‘ 𝑋 ) <<s ( R ‘ 𝑋 ) ) |
3 |
|
lltropt |
⊢ ( 𝑌 ∈ No → ( L ‘ 𝑌 ) <<s ( R ‘ 𝑌 ) ) |
4 |
3
|
adantl |
⊢ ( ( 𝑋 ∈ No ∧ 𝑌 ∈ No ) → ( L ‘ 𝑌 ) <<s ( R ‘ 𝑌 ) ) |
5 |
|
lrcut |
⊢ ( 𝑋 ∈ No → ( ( L ‘ 𝑋 ) |s ( R ‘ 𝑋 ) ) = 𝑋 ) |
6 |
5
|
eqcomd |
⊢ ( 𝑋 ∈ No → 𝑋 = ( ( L ‘ 𝑋 ) |s ( R ‘ 𝑋 ) ) ) |
7 |
6
|
adantr |
⊢ ( ( 𝑋 ∈ No ∧ 𝑌 ∈ No ) → 𝑋 = ( ( L ‘ 𝑋 ) |s ( R ‘ 𝑋 ) ) ) |
8 |
|
lrcut |
⊢ ( 𝑌 ∈ No → ( ( L ‘ 𝑌 ) |s ( R ‘ 𝑌 ) ) = 𝑌 ) |
9 |
8
|
eqcomd |
⊢ ( 𝑌 ∈ No → 𝑌 = ( ( L ‘ 𝑌 ) |s ( R ‘ 𝑌 ) ) ) |
10 |
9
|
adantl |
⊢ ( ( 𝑋 ∈ No ∧ 𝑌 ∈ No ) → 𝑌 = ( ( L ‘ 𝑌 ) |s ( R ‘ 𝑌 ) ) ) |
11 |
|
sltrec |
⊢ ( ( ( ( L ‘ 𝑋 ) <<s ( R ‘ 𝑋 ) ∧ ( L ‘ 𝑌 ) <<s ( R ‘ 𝑌 ) ) ∧ ( 𝑋 = ( ( L ‘ 𝑋 ) |s ( R ‘ 𝑋 ) ) ∧ 𝑌 = ( ( L ‘ 𝑌 ) |s ( R ‘ 𝑌 ) ) ) ) → ( 𝑋 <s 𝑌 ↔ ( ∃ 𝑦 ∈ ( L ‘ 𝑌 ) 𝑋 ≤s 𝑦 ∨ ∃ 𝑥 ∈ ( R ‘ 𝑋 ) 𝑥 ≤s 𝑌 ) ) ) |
12 |
2 4 7 10 11
|
syl22anc |
⊢ ( ( 𝑋 ∈ No ∧ 𝑌 ∈ No ) → ( 𝑋 <s 𝑌 ↔ ( ∃ 𝑦 ∈ ( L ‘ 𝑌 ) 𝑋 ≤s 𝑦 ∨ ∃ 𝑥 ∈ ( R ‘ 𝑋 ) 𝑥 ≤s 𝑌 ) ) ) |
13 |
12
|
biimp3a |
⊢ ( ( 𝑋 ∈ No ∧ 𝑌 ∈ No ∧ 𝑋 <s 𝑌 ) → ( ∃ 𝑦 ∈ ( L ‘ 𝑌 ) 𝑋 ≤s 𝑦 ∨ ∃ 𝑥 ∈ ( R ‘ 𝑋 ) 𝑥 ≤s 𝑌 ) ) |
14 |
|
rexn0 |
⊢ ( ∃ 𝑦 ∈ ( L ‘ 𝑌 ) 𝑋 ≤s 𝑦 → ( L ‘ 𝑌 ) ≠ ∅ ) |
15 |
|
rexn0 |
⊢ ( ∃ 𝑥 ∈ ( R ‘ 𝑋 ) 𝑥 ≤s 𝑌 → ( R ‘ 𝑋 ) ≠ ∅ ) |
16 |
14 15
|
orim12i |
⊢ ( ( ∃ 𝑦 ∈ ( L ‘ 𝑌 ) 𝑋 ≤s 𝑦 ∨ ∃ 𝑥 ∈ ( R ‘ 𝑋 ) 𝑥 ≤s 𝑌 ) → ( ( L ‘ 𝑌 ) ≠ ∅ ∨ ( R ‘ 𝑋 ) ≠ ∅ ) ) |
17 |
13 16
|
syl |
⊢ ( ( 𝑋 ∈ No ∧ 𝑌 ∈ No ∧ 𝑋 <s 𝑌 ) → ( ( L ‘ 𝑌 ) ≠ ∅ ∨ ( R ‘ 𝑋 ) ≠ ∅ ) ) |