Metamath Proof Explorer


Theorem sltn0

Description: If X is less than Y , then either (LY ) or ( RX ) is non-empty. (Contributed by Scott Fenton, 10-Dec-2024)

Ref Expression
Assertion sltn0 ( ( 𝑋 No 𝑌 No 𝑋 <s 𝑌 ) → ( ( L ‘ 𝑌 ) ≠ ∅ ∨ ( R ‘ 𝑋 ) ≠ ∅ ) )

Proof

Step Hyp Ref Expression
1 lltropt ( 𝑋 No → ( L ‘ 𝑋 ) <<s ( R ‘ 𝑋 ) )
2 1 adantr ( ( 𝑋 No 𝑌 No ) → ( L ‘ 𝑋 ) <<s ( R ‘ 𝑋 ) )
3 lltropt ( 𝑌 No → ( L ‘ 𝑌 ) <<s ( R ‘ 𝑌 ) )
4 3 adantl ( ( 𝑋 No 𝑌 No ) → ( L ‘ 𝑌 ) <<s ( R ‘ 𝑌 ) )
5 lrcut ( 𝑋 No → ( ( L ‘ 𝑋 ) |s ( R ‘ 𝑋 ) ) = 𝑋 )
6 5 eqcomd ( 𝑋 No 𝑋 = ( ( L ‘ 𝑋 ) |s ( R ‘ 𝑋 ) ) )
7 6 adantr ( ( 𝑋 No 𝑌 No ) → 𝑋 = ( ( L ‘ 𝑋 ) |s ( R ‘ 𝑋 ) ) )
8 lrcut ( 𝑌 No → ( ( L ‘ 𝑌 ) |s ( R ‘ 𝑌 ) ) = 𝑌 )
9 8 eqcomd ( 𝑌 No 𝑌 = ( ( L ‘ 𝑌 ) |s ( R ‘ 𝑌 ) ) )
10 9 adantl ( ( 𝑋 No 𝑌 No ) → 𝑌 = ( ( L ‘ 𝑌 ) |s ( R ‘ 𝑌 ) ) )
11 sltrec ( ( ( ( L ‘ 𝑋 ) <<s ( R ‘ 𝑋 ) ∧ ( L ‘ 𝑌 ) <<s ( R ‘ 𝑌 ) ) ∧ ( 𝑋 = ( ( L ‘ 𝑋 ) |s ( R ‘ 𝑋 ) ) ∧ 𝑌 = ( ( L ‘ 𝑌 ) |s ( R ‘ 𝑌 ) ) ) ) → ( 𝑋 <s 𝑌 ↔ ( ∃ 𝑦 ∈ ( L ‘ 𝑌 ) 𝑋 ≤s 𝑦 ∨ ∃ 𝑥 ∈ ( R ‘ 𝑋 ) 𝑥 ≤s 𝑌 ) ) )
12 2 4 7 10 11 syl22anc ( ( 𝑋 No 𝑌 No ) → ( 𝑋 <s 𝑌 ↔ ( ∃ 𝑦 ∈ ( L ‘ 𝑌 ) 𝑋 ≤s 𝑦 ∨ ∃ 𝑥 ∈ ( R ‘ 𝑋 ) 𝑥 ≤s 𝑌 ) ) )
13 12 biimp3a ( ( 𝑋 No 𝑌 No 𝑋 <s 𝑌 ) → ( ∃ 𝑦 ∈ ( L ‘ 𝑌 ) 𝑋 ≤s 𝑦 ∨ ∃ 𝑥 ∈ ( R ‘ 𝑋 ) 𝑥 ≤s 𝑌 ) )
14 rexn0 ( ∃ 𝑦 ∈ ( L ‘ 𝑌 ) 𝑋 ≤s 𝑦 → ( L ‘ 𝑌 ) ≠ ∅ )
15 rexn0 ( ∃ 𝑥 ∈ ( R ‘ 𝑋 ) 𝑥 ≤s 𝑌 → ( R ‘ 𝑋 ) ≠ ∅ )
16 14 15 orim12i ( ( ∃ 𝑦 ∈ ( L ‘ 𝑌 ) 𝑋 ≤s 𝑦 ∨ ∃ 𝑥 ∈ ( R ‘ 𝑋 ) 𝑥 ≤s 𝑌 ) → ( ( L ‘ 𝑌 ) ≠ ∅ ∨ ( R ‘ 𝑋 ) ≠ ∅ ) )
17 13 16 syl ( ( 𝑋 No 𝑌 No 𝑋 <s 𝑌 ) → ( ( L ‘ 𝑌 ) ≠ ∅ ∨ ( R ‘ 𝑋 ) ≠ ∅ ) )