Metamath Proof Explorer


Theorem sltn0

Description: If X is less than Y , then either (LeftY ) or ( RightX ) is non-empty. (Contributed by Scott Fenton, 10-Dec-2024)

Ref Expression
Assertion sltn0 ( ( 𝑋 ∈ No ∧ 𝑌 ∈ No ∧ 𝑋 <s 𝑌 ) → ( ( L ‘ 𝑌 ) ≠ ∅ âˆĻ ( R ‘ 𝑋 ) ≠ ∅ ) )

Proof

Step Hyp Ref Expression
1 lltropt âŠĒ ( L ‘ 𝑋 ) <<s ( R ‘ 𝑋 )
2 1 a1i âŠĒ ( ( 𝑋 ∈ No ∧ 𝑌 ∈ No ) → ( L ‘ 𝑋 ) <<s ( R ‘ 𝑋 ) )
3 lltropt âŠĒ ( L ‘ 𝑌 ) <<s ( R ‘ 𝑌 )
4 3 a1i âŠĒ ( ( 𝑋 ∈ No ∧ 𝑌 ∈ No ) → ( L ‘ 𝑌 ) <<s ( R ‘ 𝑌 ) )
5 lrcut âŠĒ ( 𝑋 ∈ No → ( ( L ‘ 𝑋 ) |s ( R ‘ 𝑋 ) ) = 𝑋 )
6 5 eqcomd âŠĒ ( 𝑋 ∈ No → 𝑋 = ( ( L ‘ 𝑋 ) |s ( R ‘ 𝑋 ) ) )
7 6 adantr âŠĒ ( ( 𝑋 ∈ No ∧ 𝑌 ∈ No ) → 𝑋 = ( ( L ‘ 𝑋 ) |s ( R ‘ 𝑋 ) ) )
8 lrcut âŠĒ ( 𝑌 ∈ No → ( ( L ‘ 𝑌 ) |s ( R ‘ 𝑌 ) ) = 𝑌 )
9 8 eqcomd âŠĒ ( 𝑌 ∈ No → 𝑌 = ( ( L ‘ 𝑌 ) |s ( R ‘ 𝑌 ) ) )
10 9 adantl âŠĒ ( ( 𝑋 ∈ No ∧ 𝑌 ∈ No ) → 𝑌 = ( ( L ‘ 𝑌 ) |s ( R ‘ 𝑌 ) ) )
11 sltrec âŠĒ ( ( ( ( L ‘ 𝑋 ) <<s ( R ‘ 𝑋 ) ∧ ( L ‘ 𝑌 ) <<s ( R ‘ 𝑌 ) ) ∧ ( 𝑋 = ( ( L ‘ 𝑋 ) |s ( R ‘ 𝑋 ) ) ∧ 𝑌 = ( ( L ‘ 𝑌 ) |s ( R ‘ 𝑌 ) ) ) ) → ( 𝑋 <s 𝑌 ↔ ( ∃ ð‘Ķ ∈ ( L ‘ 𝑌 ) 𝑋 â‰Īs ð‘Ķ âˆĻ ∃ ð‘Ĩ ∈ ( R ‘ 𝑋 ) ð‘Ĩ â‰Īs 𝑌 ) ) )
12 2 4 7 10 11 syl22anc âŠĒ ( ( 𝑋 ∈ No ∧ 𝑌 ∈ No ) → ( 𝑋 <s 𝑌 ↔ ( ∃ ð‘Ķ ∈ ( L ‘ 𝑌 ) 𝑋 â‰Īs ð‘Ķ âˆĻ ∃ ð‘Ĩ ∈ ( R ‘ 𝑋 ) ð‘Ĩ â‰Īs 𝑌 ) ) )
13 12 biimp3a âŠĒ ( ( 𝑋 ∈ No ∧ 𝑌 ∈ No ∧ 𝑋 <s 𝑌 ) → ( ∃ ð‘Ķ ∈ ( L ‘ 𝑌 ) 𝑋 â‰Īs ð‘Ķ âˆĻ ∃ ð‘Ĩ ∈ ( R ‘ 𝑋 ) ð‘Ĩ â‰Īs 𝑌 ) )
14 rexn0 âŠĒ ( ∃ ð‘Ķ ∈ ( L ‘ 𝑌 ) 𝑋 â‰Īs ð‘Ķ → ( L ‘ 𝑌 ) ≠ ∅ )
15 rexn0 âŠĒ ( ∃ ð‘Ĩ ∈ ( R ‘ 𝑋 ) ð‘Ĩ â‰Īs 𝑌 → ( R ‘ 𝑋 ) ≠ ∅ )
16 14 15 orim12i âŠĒ ( ( ∃ ð‘Ķ ∈ ( L ‘ 𝑌 ) 𝑋 â‰Īs ð‘Ķ âˆĻ ∃ ð‘Ĩ ∈ ( R ‘ 𝑋 ) ð‘Ĩ â‰Īs 𝑌 ) → ( ( L ‘ 𝑌 ) ≠ ∅ âˆĻ ( R ‘ 𝑋 ) ≠ ∅ ) )
17 13 16 syl âŠĒ ( ( 𝑋 ∈ No ∧ 𝑌 ∈ No ∧ 𝑋 <s 𝑌 ) → ( ( L ‘ 𝑌 ) ≠ ∅ âˆĻ ( R ‘ 𝑋 ) ≠ ∅ ) )