| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lltropt | ⊢ (  L  ‘ 𝑋 )  <<s  (  R  ‘ 𝑋 ) | 
						
							| 2 | 1 | a1i | ⊢ ( ( 𝑋  ∈   No   ∧  𝑌  ∈   No  )  →  (  L  ‘ 𝑋 )  <<s  (  R  ‘ 𝑋 ) ) | 
						
							| 3 |  | lltropt | ⊢ (  L  ‘ 𝑌 )  <<s  (  R  ‘ 𝑌 ) | 
						
							| 4 | 3 | a1i | ⊢ ( ( 𝑋  ∈   No   ∧  𝑌  ∈   No  )  →  (  L  ‘ 𝑌 )  <<s  (  R  ‘ 𝑌 ) ) | 
						
							| 5 |  | lrcut | ⊢ ( 𝑋  ∈   No   →  ( (  L  ‘ 𝑋 )  |s  (  R  ‘ 𝑋 ) )  =  𝑋 ) | 
						
							| 6 | 5 | eqcomd | ⊢ ( 𝑋  ∈   No   →  𝑋  =  ( (  L  ‘ 𝑋 )  |s  (  R  ‘ 𝑋 ) ) ) | 
						
							| 7 | 6 | adantr | ⊢ ( ( 𝑋  ∈   No   ∧  𝑌  ∈   No  )  →  𝑋  =  ( (  L  ‘ 𝑋 )  |s  (  R  ‘ 𝑋 ) ) ) | 
						
							| 8 |  | lrcut | ⊢ ( 𝑌  ∈   No   →  ( (  L  ‘ 𝑌 )  |s  (  R  ‘ 𝑌 ) )  =  𝑌 ) | 
						
							| 9 | 8 | eqcomd | ⊢ ( 𝑌  ∈   No   →  𝑌  =  ( (  L  ‘ 𝑌 )  |s  (  R  ‘ 𝑌 ) ) ) | 
						
							| 10 | 9 | adantl | ⊢ ( ( 𝑋  ∈   No   ∧  𝑌  ∈   No  )  →  𝑌  =  ( (  L  ‘ 𝑌 )  |s  (  R  ‘ 𝑌 ) ) ) | 
						
							| 11 |  | sltrec | ⊢ ( ( ( (  L  ‘ 𝑋 )  <<s  (  R  ‘ 𝑋 )  ∧  (  L  ‘ 𝑌 )  <<s  (  R  ‘ 𝑌 ) )  ∧  ( 𝑋  =  ( (  L  ‘ 𝑋 )  |s  (  R  ‘ 𝑋 ) )  ∧  𝑌  =  ( (  L  ‘ 𝑌 )  |s  (  R  ‘ 𝑌 ) ) ) )  →  ( 𝑋  <s  𝑌  ↔  ( ∃ 𝑦  ∈  (  L  ‘ 𝑌 ) 𝑋  ≤s  𝑦  ∨  ∃ 𝑥  ∈  (  R  ‘ 𝑋 ) 𝑥  ≤s  𝑌 ) ) ) | 
						
							| 12 | 2 4 7 10 11 | syl22anc | ⊢ ( ( 𝑋  ∈   No   ∧  𝑌  ∈   No  )  →  ( 𝑋  <s  𝑌  ↔  ( ∃ 𝑦  ∈  (  L  ‘ 𝑌 ) 𝑋  ≤s  𝑦  ∨  ∃ 𝑥  ∈  (  R  ‘ 𝑋 ) 𝑥  ≤s  𝑌 ) ) ) | 
						
							| 13 | 12 | biimp3a | ⊢ ( ( 𝑋  ∈   No   ∧  𝑌  ∈   No   ∧  𝑋  <s  𝑌 )  →  ( ∃ 𝑦  ∈  (  L  ‘ 𝑌 ) 𝑋  ≤s  𝑦  ∨  ∃ 𝑥  ∈  (  R  ‘ 𝑋 ) 𝑥  ≤s  𝑌 ) ) | 
						
							| 14 |  | rexn0 | ⊢ ( ∃ 𝑦  ∈  (  L  ‘ 𝑌 ) 𝑋  ≤s  𝑦  →  (  L  ‘ 𝑌 )  ≠  ∅ ) | 
						
							| 15 |  | rexn0 | ⊢ ( ∃ 𝑥  ∈  (  R  ‘ 𝑋 ) 𝑥  ≤s  𝑌  →  (  R  ‘ 𝑋 )  ≠  ∅ ) | 
						
							| 16 | 14 15 | orim12i | ⊢ ( ( ∃ 𝑦  ∈  (  L  ‘ 𝑌 ) 𝑋  ≤s  𝑦  ∨  ∃ 𝑥  ∈  (  R  ‘ 𝑋 ) 𝑥  ≤s  𝑌 )  →  ( (  L  ‘ 𝑌 )  ≠  ∅  ∨  (  R  ‘ 𝑋 )  ≠  ∅ ) ) | 
						
							| 17 | 13 16 | syl | ⊢ ( ( 𝑋  ∈   No   ∧  𝑌  ∈   No   ∧  𝑋  <s  𝑌 )  →  ( (  L  ‘ 𝑌 )  ≠  ∅  ∨  (  R  ‘ 𝑋 )  ≠  ∅ ) ) |