Description: Surreal less-than relationship between subtraction and addition. (Contributed by Scott Fenton, 27-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sltsubadd.1 | ⊢ ( 𝜑 → 𝐴 ∈ No ) | |
| sltsubadd.2 | ⊢ ( 𝜑 → 𝐵 ∈ No ) | ||
| sltsubadd.3 | ⊢ ( 𝜑 → 𝐶 ∈ No ) | ||
| Assertion | sltsubadd2d | ⊢ ( 𝜑 → ( ( 𝐴 -s 𝐵 ) <s 𝐶 ↔ 𝐴 <s ( 𝐵 +s 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sltsubadd.1 | ⊢ ( 𝜑 → 𝐴 ∈ No ) | |
| 2 | sltsubadd.2 | ⊢ ( 𝜑 → 𝐵 ∈ No ) | |
| 3 | sltsubadd.3 | ⊢ ( 𝜑 → 𝐶 ∈ No ) | |
| 4 | 1 2 3 | sltsubaddd | ⊢ ( 𝜑 → ( ( 𝐴 -s 𝐵 ) <s 𝐶 ↔ 𝐴 <s ( 𝐶 +s 𝐵 ) ) ) |
| 5 | 2 3 | addscomd | ⊢ ( 𝜑 → ( 𝐵 +s 𝐶 ) = ( 𝐶 +s 𝐵 ) ) |
| 6 | 5 | breq2d | ⊢ ( 𝜑 → ( 𝐴 <s ( 𝐵 +s 𝐶 ) ↔ 𝐴 <s ( 𝐶 +s 𝐵 ) ) ) |
| 7 | 4 6 | bitr4d | ⊢ ( 𝜑 → ( ( 𝐴 -s 𝐵 ) <s 𝐶 ↔ 𝐴 <s ( 𝐵 +s 𝐶 ) ) ) |