Description: If a countable set of sigma-measurable functions have domains in the sigma-algebra, then their infimum function has the domain in the sigma-algebra. This is the fifth statement of Proposition 121H of Fremlin1 p. 39 . (Contributed by Glauco Siliprandi, 1-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | smfinfdmmbl.1 | ⊢ Ⅎ 𝑛 𝜑 | |
smfinfdmmbl.2 | ⊢ Ⅎ 𝑥 𝜑 | ||
smfinfdmmbl.3 | ⊢ Ⅎ 𝑥 𝐹 | ||
smfinfdmmbl.4 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
smfinfdmmbl.5 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | ||
smfinfdmmbl.6 | ⊢ ( 𝜑 → 𝑆 ∈ SAlg ) | ||
smfinfdmmbl.7 | ⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) ) | ||
smfinfdmmbl.8 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → dom ( 𝐹 ‘ 𝑛 ) ∈ 𝑆 ) | ||
smfinfdmmbl.9 | ⊢ 𝐷 = { 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∣ ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) } | ||
smfinfdmmbl.10 | ⊢ 𝐺 = ( 𝑥 ∈ 𝐷 ↦ inf ( ran ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) | ||
Assertion | smfinfdmmbl | ⊢ ( 𝜑 → dom 𝐺 ∈ 𝑆 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smfinfdmmbl.1 | ⊢ Ⅎ 𝑛 𝜑 | |
2 | smfinfdmmbl.2 | ⊢ Ⅎ 𝑥 𝜑 | |
3 | smfinfdmmbl.3 | ⊢ Ⅎ 𝑥 𝐹 | |
4 | smfinfdmmbl.4 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
5 | smfinfdmmbl.5 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
6 | smfinfdmmbl.6 | ⊢ ( 𝜑 → 𝑆 ∈ SAlg ) | |
7 | smfinfdmmbl.7 | ⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) ) | |
8 | smfinfdmmbl.8 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → dom ( 𝐹 ‘ 𝑛 ) ∈ 𝑆 ) | |
9 | smfinfdmmbl.9 | ⊢ 𝐷 = { 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ( 𝐹 ‘ 𝑛 ) ∣ ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ 𝑍 𝑦 ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) } | |
10 | smfinfdmmbl.10 | ⊢ 𝐺 = ( 𝑥 ∈ 𝐷 ↦ inf ( ran ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) | |
11 | nfv | ⊢ Ⅎ 𝑚 𝜑 | |
12 | eqid | ⊢ ( 𝑛 ∈ 𝑍 ↦ ( 𝑚 ∈ ℕ ↦ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ∣ - 𝑚 < ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) } ) ) = ( 𝑛 ∈ 𝑍 ↦ ( 𝑚 ∈ ℕ ↦ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑛 ) ∣ - 𝑚 < ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) } ) ) | |
13 | 1 2 11 3 4 5 6 7 8 9 10 12 | smfinfdmmbllem | ⊢ ( 𝜑 → dom 𝐺 ∈ 𝑆 ) |