Metamath Proof Explorer


Theorem smfinfdmmbl

Description: If a countable set of sigma-measurable functions have domains in the sigma-algebra, then their infimum function has the domain in the sigma-algebra. This is the fifth statement of Proposition 121H of Fremlin1 p. 39 . (Contributed by Glauco Siliprandi, 1-Feb-2025)

Ref Expression
Hypotheses smfinfdmmbl.1 𝑛 𝜑
smfinfdmmbl.2 𝑥 𝜑
smfinfdmmbl.3 𝑥 𝐹
smfinfdmmbl.4 ( 𝜑𝑀 ∈ ℤ )
smfinfdmmbl.5 𝑍 = ( ℤ𝑀 )
smfinfdmmbl.6 ( 𝜑𝑆 ∈ SAlg )
smfinfdmmbl.7 ( 𝜑𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) )
smfinfdmmbl.8 ( ( 𝜑𝑛𝑍 ) → dom ( 𝐹𝑛 ) ∈ 𝑆 )
smfinfdmmbl.9 𝐷 = { 𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ∣ ∃ 𝑦 ∈ ℝ ∀ 𝑛𝑍 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) }
smfinfdmmbl.10 𝐺 = ( 𝑥𝐷 ↦ inf ( ran ( 𝑛𝑍 ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) )
Assertion smfinfdmmbl ( 𝜑 → dom 𝐺𝑆 )

Proof

Step Hyp Ref Expression
1 smfinfdmmbl.1 𝑛 𝜑
2 smfinfdmmbl.2 𝑥 𝜑
3 smfinfdmmbl.3 𝑥 𝐹
4 smfinfdmmbl.4 ( 𝜑𝑀 ∈ ℤ )
5 smfinfdmmbl.5 𝑍 = ( ℤ𝑀 )
6 smfinfdmmbl.6 ( 𝜑𝑆 ∈ SAlg )
7 smfinfdmmbl.7 ( 𝜑𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) )
8 smfinfdmmbl.8 ( ( 𝜑𝑛𝑍 ) → dom ( 𝐹𝑛 ) ∈ 𝑆 )
9 smfinfdmmbl.9 𝐷 = { 𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ∣ ∃ 𝑦 ∈ ℝ ∀ 𝑛𝑍 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) }
10 smfinfdmmbl.10 𝐺 = ( 𝑥𝐷 ↦ inf ( ran ( 𝑛𝑍 ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) )
11 nfv 𝑚 𝜑
12 eqid ( 𝑛𝑍 ↦ ( 𝑚 ∈ ℕ ↦ { 𝑥 ∈ dom ( 𝐹𝑛 ) ∣ - 𝑚 < ( ( 𝐹𝑛 ) ‘ 𝑥 ) } ) ) = ( 𝑛𝑍 ↦ ( 𝑚 ∈ ℕ ↦ { 𝑥 ∈ dom ( 𝐹𝑛 ) ∣ - 𝑚 < ( ( 𝐹𝑛 ) ‘ 𝑥 ) } ) )
13 1 2 11 3 4 5 6 7 8 9 10 12 smfinfdmmbllem ( 𝜑 → dom 𝐺𝑆 )