Metamath Proof Explorer


Theorem smfinfdmmbl

Description: If a countable set of sigma-measurable functions have domains in the sigma-algebra, then their infimum function has the domain in the sigma-algebra. This is the fifth statement of Proposition 121H of Fremlin1 p. 39 . (Contributed by Glauco Siliprandi, 1-Feb-2025)

Ref Expression
Hypotheses smfinfdmmbl.1 n φ
smfinfdmmbl.2 x φ
smfinfdmmbl.3 _ x F
smfinfdmmbl.4 φ M
smfinfdmmbl.5 Z = M
smfinfdmmbl.6 φ S SAlg
smfinfdmmbl.7 φ F : Z SMblFn S
smfinfdmmbl.8 φ n Z dom F n S
smfinfdmmbl.9 D = x n Z dom F n | y n Z y F n x
smfinfdmmbl.10 G = x D inf ran n Z F n x <
Assertion smfinfdmmbl φ dom G S

Proof

Step Hyp Ref Expression
1 smfinfdmmbl.1 n φ
2 smfinfdmmbl.2 x φ
3 smfinfdmmbl.3 _ x F
4 smfinfdmmbl.4 φ M
5 smfinfdmmbl.5 Z = M
6 smfinfdmmbl.6 φ S SAlg
7 smfinfdmmbl.7 φ F : Z SMblFn S
8 smfinfdmmbl.8 φ n Z dom F n S
9 smfinfdmmbl.9 D = x n Z dom F n | y n Z y F n x
10 smfinfdmmbl.10 G = x D inf ran n Z F n x <
11 nfv m φ
12 eqid n Z m x dom F n | m < F n x = n Z m x dom F n | m < F n x
13 1 2 11 3 4 5 6 7 8 9 10 12 smfinfdmmbllem φ dom G S