Metamath Proof Explorer


Theorem smfinfdmmbllem

Description: If a countable set of sigma-measurable functions have domains in the sigma-algebra, then their infimum function has the domain in the sigma-algebra. This is the fifth statement of Proposition 121H of Fremlin1 p. 39 . (Contributed by Glauco Siliprandi, 1-Feb-2025)

Ref Expression
Hypotheses smfinfdmmbllem.1 n φ
smfinfdmmbllem.2 x φ
smfinfdmmbllem.3 m φ
smfinfdmmbllem.4 _ x F
smfinfdmmbllem.5 φ M
smfinfdmmbllem.6 Z = M
smfinfdmmbllem.7 φ S SAlg
smfinfdmmbllem.8 φ F : Z SMblFn S
smfinfdmmbllem.9 φ n Z dom F n S
smfinfdmmbllem.10 D = x n Z dom F n | y n Z y F n x
smfinfdmmbllem.11 G = x D inf ran n Z F n x <
smfinfdmmbllem.12 H = n Z m x dom F n | m < F n x
Assertion smfinfdmmbllem φ dom G S

Proof

Step Hyp Ref Expression
1 smfinfdmmbllem.1 n φ
2 smfinfdmmbllem.2 x φ
3 smfinfdmmbllem.3 m φ
4 smfinfdmmbllem.4 _ x F
5 smfinfdmmbllem.5 φ M
6 smfinfdmmbllem.6 Z = M
7 smfinfdmmbllem.7 φ S SAlg
8 smfinfdmmbllem.8 φ F : Z SMblFn S
9 smfinfdmmbllem.9 φ n Z dom F n S
10 smfinfdmmbllem.10 D = x n Z dom F n | y n Z y F n x
11 smfinfdmmbllem.11 G = x D inf ran n Z F n x <
12 smfinfdmmbllem.12 H = n Z m x dom F n | m < F n x
13 7 adantr φ n Z S SAlg
14 8 ffvelcdmda φ n Z F n SMblFn S
15 eqid dom F n = dom F n
16 13 14 15 smff φ n Z F n : dom F n
17 16 frexr φ n Z F n : dom F n *
18 1 2 3 4 17 10 11 12 finfdm2 φ dom G = m n Z H n m
19 nfcv _ m S
20 nfcv _ m
21 nnct ω
22 21 a1i φ ω
23 nfv n m
24 1 23 nfan n φ m
25 nfcv _ n S
26 nfcv _ n Z
27 7 adantr φ m S SAlg
28 6 uzct Z ω
29 28 a1i φ m Z ω
30 5 6 uzn0d φ Z
31 30 adantr φ m Z
32 27 adantr φ m n Z S SAlg
33 9 adantlr φ m n Z dom F n S
34 32 33 salrestss φ m n Z S 𝑡 dom F n S
35 nfv m n Z
36 3 35 nfan m φ n Z
37 nfcv _ x n
38 4 37 nffv _ x F n
39 14 adantlr φ m n Z F n SMblFn S
40 nnre m m
41 40 renegcld m m
42 41 rexrd m m *
43 42 ad2antlr φ m n Z m *
44 38 32 39 15 43 smfpimgtxr φ m n Z x dom F n | m < F n x S 𝑡 dom F n
45 44 an32s φ n Z m x dom F n | m < F n x S 𝑡 dom F n
46 36 45 fmptd2f φ n Z m x dom F n | m < F n x : S 𝑡 dom F n
47 simpr φ n Z n Z
48 nnex V
49 48 mptex m x dom F n | m < F n x V
50 12 fvmpt2 n Z m x dom F n | m < F n x V H n = m x dom F n | m < F n x
51 47 49 50 sylancl φ n Z H n = m x dom F n | m < F n x
52 51 feq1d φ n Z H n : S 𝑡 dom F n m x dom F n | m < F n x : S 𝑡 dom F n
53 46 52 mpbird φ n Z H n : S 𝑡 dom F n
54 53 adantlr φ m n Z H n : S 𝑡 dom F n
55 simplr φ m n Z m
56 54 55 ffvelcdmd φ m n Z H n m S 𝑡 dom F n
57 34 56 sseldd φ m n Z H n m S
58 24 25 26 27 29 31 57 saliinclf φ m n Z H n m S
59 3 19 20 7 22 58 saliunclf φ m n Z H n m S
60 18 59 eqeltrd φ dom G S