Metamath Proof Explorer


Theorem smfinfdmmbllem

Description: If a countable set of sigma-measurable functions have domains in the sigma-algebra, then their infimum function has the domain in the sigma-algebra. This is the fifth statement of Proposition 121H of Fremlin1 p. 39 . (Contributed by Glauco Siliprandi, 1-Feb-2025)

Ref Expression
Hypotheses smfinfdmmbllem.1 𝑛 𝜑
smfinfdmmbllem.2 𝑥 𝜑
smfinfdmmbllem.3 𝑚 𝜑
smfinfdmmbllem.4 𝑥 𝐹
smfinfdmmbllem.5 ( 𝜑𝑀 ∈ ℤ )
smfinfdmmbllem.6 𝑍 = ( ℤ𝑀 )
smfinfdmmbllem.7 ( 𝜑𝑆 ∈ SAlg )
smfinfdmmbllem.8 ( 𝜑𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) )
smfinfdmmbllem.9 ( ( 𝜑𝑛𝑍 ) → dom ( 𝐹𝑛 ) ∈ 𝑆 )
smfinfdmmbllem.10 𝐷 = { 𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ∣ ∃ 𝑦 ∈ ℝ ∀ 𝑛𝑍 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) }
smfinfdmmbllem.11 𝐺 = ( 𝑥𝐷 ↦ inf ( ran ( 𝑛𝑍 ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) )
smfinfdmmbllem.12 𝐻 = ( 𝑛𝑍 ↦ ( 𝑚 ∈ ℕ ↦ { 𝑥 ∈ dom ( 𝐹𝑛 ) ∣ - 𝑚 < ( ( 𝐹𝑛 ) ‘ 𝑥 ) } ) )
Assertion smfinfdmmbllem ( 𝜑 → dom 𝐺𝑆 )

Proof

Step Hyp Ref Expression
1 smfinfdmmbllem.1 𝑛 𝜑
2 smfinfdmmbllem.2 𝑥 𝜑
3 smfinfdmmbllem.3 𝑚 𝜑
4 smfinfdmmbllem.4 𝑥 𝐹
5 smfinfdmmbllem.5 ( 𝜑𝑀 ∈ ℤ )
6 smfinfdmmbllem.6 𝑍 = ( ℤ𝑀 )
7 smfinfdmmbllem.7 ( 𝜑𝑆 ∈ SAlg )
8 smfinfdmmbllem.8 ( 𝜑𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) )
9 smfinfdmmbllem.9 ( ( 𝜑𝑛𝑍 ) → dom ( 𝐹𝑛 ) ∈ 𝑆 )
10 smfinfdmmbllem.10 𝐷 = { 𝑥 𝑛𝑍 dom ( 𝐹𝑛 ) ∣ ∃ 𝑦 ∈ ℝ ∀ 𝑛𝑍 𝑦 ≤ ( ( 𝐹𝑛 ) ‘ 𝑥 ) }
11 smfinfdmmbllem.11 𝐺 = ( 𝑥𝐷 ↦ inf ( ran ( 𝑛𝑍 ↦ ( ( 𝐹𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) )
12 smfinfdmmbllem.12 𝐻 = ( 𝑛𝑍 ↦ ( 𝑚 ∈ ℕ ↦ { 𝑥 ∈ dom ( 𝐹𝑛 ) ∣ - 𝑚 < ( ( 𝐹𝑛 ) ‘ 𝑥 ) } ) )
13 7 adantr ( ( 𝜑𝑛𝑍 ) → 𝑆 ∈ SAlg )
14 8 ffvelcdmda ( ( 𝜑𝑛𝑍 ) → ( 𝐹𝑛 ) ∈ ( SMblFn ‘ 𝑆 ) )
15 eqid dom ( 𝐹𝑛 ) = dom ( 𝐹𝑛 )
16 13 14 15 smff ( ( 𝜑𝑛𝑍 ) → ( 𝐹𝑛 ) : dom ( 𝐹𝑛 ) ⟶ ℝ )
17 16 frexr ( ( 𝜑𝑛𝑍 ) → ( 𝐹𝑛 ) : dom ( 𝐹𝑛 ) ⟶ ℝ* )
18 1 2 3 4 17 10 11 12 finfdm2 ( 𝜑 → dom 𝐺 = 𝑚 ∈ ℕ 𝑛𝑍 ( ( 𝐻𝑛 ) ‘ 𝑚 ) )
19 nfcv 𝑚 𝑆
20 nfcv 𝑚
21 nnct ℕ ≼ ω
22 21 a1i ( 𝜑 → ℕ ≼ ω )
23 nfv 𝑛 𝑚 ∈ ℕ
24 1 23 nfan 𝑛 ( 𝜑𝑚 ∈ ℕ )
25 nfcv 𝑛 𝑆
26 nfcv 𝑛 𝑍
27 7 adantr ( ( 𝜑𝑚 ∈ ℕ ) → 𝑆 ∈ SAlg )
28 6 uzct 𝑍 ≼ ω
29 28 a1i ( ( 𝜑𝑚 ∈ ℕ ) → 𝑍 ≼ ω )
30 5 6 uzn0d ( 𝜑𝑍 ≠ ∅ )
31 30 adantr ( ( 𝜑𝑚 ∈ ℕ ) → 𝑍 ≠ ∅ )
32 27 adantr ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ 𝑛𝑍 ) → 𝑆 ∈ SAlg )
33 9 adantlr ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ 𝑛𝑍 ) → dom ( 𝐹𝑛 ) ∈ 𝑆 )
34 32 33 salrestss ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ 𝑛𝑍 ) → ( 𝑆t dom ( 𝐹𝑛 ) ) ⊆ 𝑆 )
35 nfv 𝑚 𝑛𝑍
36 3 35 nfan 𝑚 ( 𝜑𝑛𝑍 )
37 nfcv 𝑥 𝑛
38 4 37 nffv 𝑥 ( 𝐹𝑛 )
39 14 adantlr ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ 𝑛𝑍 ) → ( 𝐹𝑛 ) ∈ ( SMblFn ‘ 𝑆 ) )
40 nnre ( 𝑚 ∈ ℕ → 𝑚 ∈ ℝ )
41 40 renegcld ( 𝑚 ∈ ℕ → - 𝑚 ∈ ℝ )
42 41 rexrd ( 𝑚 ∈ ℕ → - 𝑚 ∈ ℝ* )
43 42 ad2antlr ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ 𝑛𝑍 ) → - 𝑚 ∈ ℝ* )
44 38 32 39 15 43 smfpimgtxr ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ 𝑛𝑍 ) → { 𝑥 ∈ dom ( 𝐹𝑛 ) ∣ - 𝑚 < ( ( 𝐹𝑛 ) ‘ 𝑥 ) } ∈ ( 𝑆t dom ( 𝐹𝑛 ) ) )
45 44 an32s ( ( ( 𝜑𝑛𝑍 ) ∧ 𝑚 ∈ ℕ ) → { 𝑥 ∈ dom ( 𝐹𝑛 ) ∣ - 𝑚 < ( ( 𝐹𝑛 ) ‘ 𝑥 ) } ∈ ( 𝑆t dom ( 𝐹𝑛 ) ) )
46 36 45 fmptd2f ( ( 𝜑𝑛𝑍 ) → ( 𝑚 ∈ ℕ ↦ { 𝑥 ∈ dom ( 𝐹𝑛 ) ∣ - 𝑚 < ( ( 𝐹𝑛 ) ‘ 𝑥 ) } ) : ℕ ⟶ ( 𝑆t dom ( 𝐹𝑛 ) ) )
47 simpr ( ( 𝜑𝑛𝑍 ) → 𝑛𝑍 )
48 nnex ℕ ∈ V
49 48 mptex ( 𝑚 ∈ ℕ ↦ { 𝑥 ∈ dom ( 𝐹𝑛 ) ∣ - 𝑚 < ( ( 𝐹𝑛 ) ‘ 𝑥 ) } ) ∈ V
50 12 fvmpt2 ( ( 𝑛𝑍 ∧ ( 𝑚 ∈ ℕ ↦ { 𝑥 ∈ dom ( 𝐹𝑛 ) ∣ - 𝑚 < ( ( 𝐹𝑛 ) ‘ 𝑥 ) } ) ∈ V ) → ( 𝐻𝑛 ) = ( 𝑚 ∈ ℕ ↦ { 𝑥 ∈ dom ( 𝐹𝑛 ) ∣ - 𝑚 < ( ( 𝐹𝑛 ) ‘ 𝑥 ) } ) )
51 47 49 50 sylancl ( ( 𝜑𝑛𝑍 ) → ( 𝐻𝑛 ) = ( 𝑚 ∈ ℕ ↦ { 𝑥 ∈ dom ( 𝐹𝑛 ) ∣ - 𝑚 < ( ( 𝐹𝑛 ) ‘ 𝑥 ) } ) )
52 51 feq1d ( ( 𝜑𝑛𝑍 ) → ( ( 𝐻𝑛 ) : ℕ ⟶ ( 𝑆t dom ( 𝐹𝑛 ) ) ↔ ( 𝑚 ∈ ℕ ↦ { 𝑥 ∈ dom ( 𝐹𝑛 ) ∣ - 𝑚 < ( ( 𝐹𝑛 ) ‘ 𝑥 ) } ) : ℕ ⟶ ( 𝑆t dom ( 𝐹𝑛 ) ) ) )
53 46 52 mpbird ( ( 𝜑𝑛𝑍 ) → ( 𝐻𝑛 ) : ℕ ⟶ ( 𝑆t dom ( 𝐹𝑛 ) ) )
54 53 adantlr ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ 𝑛𝑍 ) → ( 𝐻𝑛 ) : ℕ ⟶ ( 𝑆t dom ( 𝐹𝑛 ) ) )
55 simplr ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ 𝑛𝑍 ) → 𝑚 ∈ ℕ )
56 54 55 ffvelcdmd ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ 𝑛𝑍 ) → ( ( 𝐻𝑛 ) ‘ 𝑚 ) ∈ ( 𝑆t dom ( 𝐹𝑛 ) ) )
57 34 56 sseldd ( ( ( 𝜑𝑚 ∈ ℕ ) ∧ 𝑛𝑍 ) → ( ( 𝐻𝑛 ) ‘ 𝑚 ) ∈ 𝑆 )
58 24 25 26 27 29 31 57 saliinclf ( ( 𝜑𝑚 ∈ ℕ ) → 𝑛𝑍 ( ( 𝐻𝑛 ) ‘ 𝑚 ) ∈ 𝑆 )
59 3 19 20 7 22 58 saliunclf ( 𝜑 𝑚 ∈ ℕ 𝑛𝑍 ( ( 𝐻𝑛 ) ‘ 𝑚 ) ∈ 𝑆 )
60 18 59 eqeltrd ( 𝜑 → dom 𝐺𝑆 )