Step |
Hyp |
Ref |
Expression |
1 |
|
smfinfdmmbllem.1 |
|- F/ n ph |
2 |
|
smfinfdmmbllem.2 |
|- F/ x ph |
3 |
|
smfinfdmmbllem.3 |
|- F/ m ph |
4 |
|
smfinfdmmbllem.4 |
|- F/_ x F |
5 |
|
smfinfdmmbllem.5 |
|- ( ph -> M e. ZZ ) |
6 |
|
smfinfdmmbllem.6 |
|- Z = ( ZZ>= ` M ) |
7 |
|
smfinfdmmbllem.7 |
|- ( ph -> S e. SAlg ) |
8 |
|
smfinfdmmbllem.8 |
|- ( ph -> F : Z --> ( SMblFn ` S ) ) |
9 |
|
smfinfdmmbllem.9 |
|- ( ( ph /\ n e. Z ) -> dom ( F ` n ) e. S ) |
10 |
|
smfinfdmmbllem.10 |
|- D = { x e. |^|_ n e. Z dom ( F ` n ) | E. y e. RR A. n e. Z y <_ ( ( F ` n ) ` x ) } |
11 |
|
smfinfdmmbllem.11 |
|- G = ( x e. D |-> inf ( ran ( n e. Z |-> ( ( F ` n ) ` x ) ) , RR , < ) ) |
12 |
|
smfinfdmmbllem.12 |
|- H = ( n e. Z |-> ( m e. NN |-> { x e. dom ( F ` n ) | -u m < ( ( F ` n ) ` x ) } ) ) |
13 |
7
|
adantr |
|- ( ( ph /\ n e. Z ) -> S e. SAlg ) |
14 |
8
|
ffvelcdmda |
|- ( ( ph /\ n e. Z ) -> ( F ` n ) e. ( SMblFn ` S ) ) |
15 |
|
eqid |
|- dom ( F ` n ) = dom ( F ` n ) |
16 |
13 14 15
|
smff |
|- ( ( ph /\ n e. Z ) -> ( F ` n ) : dom ( F ` n ) --> RR ) |
17 |
16
|
frexr |
|- ( ( ph /\ n e. Z ) -> ( F ` n ) : dom ( F ` n ) --> RR* ) |
18 |
1 2 3 4 17 10 11 12
|
finfdm2 |
|- ( ph -> dom G = U_ m e. NN |^|_ n e. Z ( ( H ` n ) ` m ) ) |
19 |
|
nfcv |
|- F/_ m S |
20 |
|
nfcv |
|- F/_ m NN |
21 |
|
nnct |
|- NN ~<_ _om |
22 |
21
|
a1i |
|- ( ph -> NN ~<_ _om ) |
23 |
|
nfv |
|- F/ n m e. NN |
24 |
1 23
|
nfan |
|- F/ n ( ph /\ m e. NN ) |
25 |
|
nfcv |
|- F/_ n S |
26 |
|
nfcv |
|- F/_ n Z |
27 |
7
|
adantr |
|- ( ( ph /\ m e. NN ) -> S e. SAlg ) |
28 |
6
|
uzct |
|- Z ~<_ _om |
29 |
28
|
a1i |
|- ( ( ph /\ m e. NN ) -> Z ~<_ _om ) |
30 |
5 6
|
uzn0d |
|- ( ph -> Z =/= (/) ) |
31 |
30
|
adantr |
|- ( ( ph /\ m e. NN ) -> Z =/= (/) ) |
32 |
27
|
adantr |
|- ( ( ( ph /\ m e. NN ) /\ n e. Z ) -> S e. SAlg ) |
33 |
9
|
adantlr |
|- ( ( ( ph /\ m e. NN ) /\ n e. Z ) -> dom ( F ` n ) e. S ) |
34 |
32 33
|
salrestss |
|- ( ( ( ph /\ m e. NN ) /\ n e. Z ) -> ( S |`t dom ( F ` n ) ) C_ S ) |
35 |
|
nfv |
|- F/ m n e. Z |
36 |
3 35
|
nfan |
|- F/ m ( ph /\ n e. Z ) |
37 |
|
nfcv |
|- F/_ x n |
38 |
4 37
|
nffv |
|- F/_ x ( F ` n ) |
39 |
14
|
adantlr |
|- ( ( ( ph /\ m e. NN ) /\ n e. Z ) -> ( F ` n ) e. ( SMblFn ` S ) ) |
40 |
|
nnre |
|- ( m e. NN -> m e. RR ) |
41 |
40
|
renegcld |
|- ( m e. NN -> -u m e. RR ) |
42 |
41
|
rexrd |
|- ( m e. NN -> -u m e. RR* ) |
43 |
42
|
ad2antlr |
|- ( ( ( ph /\ m e. NN ) /\ n e. Z ) -> -u m e. RR* ) |
44 |
38 32 39 15 43
|
smfpimgtxr |
|- ( ( ( ph /\ m e. NN ) /\ n e. Z ) -> { x e. dom ( F ` n ) | -u m < ( ( F ` n ) ` x ) } e. ( S |`t dom ( F ` n ) ) ) |
45 |
44
|
an32s |
|- ( ( ( ph /\ n e. Z ) /\ m e. NN ) -> { x e. dom ( F ` n ) | -u m < ( ( F ` n ) ` x ) } e. ( S |`t dom ( F ` n ) ) ) |
46 |
36 45
|
fmptd2f |
|- ( ( ph /\ n e. Z ) -> ( m e. NN |-> { x e. dom ( F ` n ) | -u m < ( ( F ` n ) ` x ) } ) : NN --> ( S |`t dom ( F ` n ) ) ) |
47 |
|
simpr |
|- ( ( ph /\ n e. Z ) -> n e. Z ) |
48 |
|
nnex |
|- NN e. _V |
49 |
48
|
mptex |
|- ( m e. NN |-> { x e. dom ( F ` n ) | -u m < ( ( F ` n ) ` x ) } ) e. _V |
50 |
12
|
fvmpt2 |
|- ( ( n e. Z /\ ( m e. NN |-> { x e. dom ( F ` n ) | -u m < ( ( F ` n ) ` x ) } ) e. _V ) -> ( H ` n ) = ( m e. NN |-> { x e. dom ( F ` n ) | -u m < ( ( F ` n ) ` x ) } ) ) |
51 |
47 49 50
|
sylancl |
|- ( ( ph /\ n e. Z ) -> ( H ` n ) = ( m e. NN |-> { x e. dom ( F ` n ) | -u m < ( ( F ` n ) ` x ) } ) ) |
52 |
51
|
feq1d |
|- ( ( ph /\ n e. Z ) -> ( ( H ` n ) : NN --> ( S |`t dom ( F ` n ) ) <-> ( m e. NN |-> { x e. dom ( F ` n ) | -u m < ( ( F ` n ) ` x ) } ) : NN --> ( S |`t dom ( F ` n ) ) ) ) |
53 |
46 52
|
mpbird |
|- ( ( ph /\ n e. Z ) -> ( H ` n ) : NN --> ( S |`t dom ( F ` n ) ) ) |
54 |
53
|
adantlr |
|- ( ( ( ph /\ m e. NN ) /\ n e. Z ) -> ( H ` n ) : NN --> ( S |`t dom ( F ` n ) ) ) |
55 |
|
simplr |
|- ( ( ( ph /\ m e. NN ) /\ n e. Z ) -> m e. NN ) |
56 |
54 55
|
ffvelcdmd |
|- ( ( ( ph /\ m e. NN ) /\ n e. Z ) -> ( ( H ` n ) ` m ) e. ( S |`t dom ( F ` n ) ) ) |
57 |
34 56
|
sseldd |
|- ( ( ( ph /\ m e. NN ) /\ n e. Z ) -> ( ( H ` n ) ` m ) e. S ) |
58 |
24 25 26 27 29 31 57
|
saliinclf |
|- ( ( ph /\ m e. NN ) -> |^|_ n e. Z ( ( H ` n ) ` m ) e. S ) |
59 |
3 19 20 7 22 58
|
saliunclf |
|- ( ph -> U_ m e. NN |^|_ n e. Z ( ( H ` n ) ` m ) e. S ) |
60 |
18 59
|
eqeltrd |
|- ( ph -> dom G e. S ) |