| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smfinfdmmbllem.1 |  |-  F/ n ph | 
						
							| 2 |  | smfinfdmmbllem.2 |  |-  F/ x ph | 
						
							| 3 |  | smfinfdmmbllem.3 |  |-  F/ m ph | 
						
							| 4 |  | smfinfdmmbllem.4 |  |-  F/_ x F | 
						
							| 5 |  | smfinfdmmbllem.5 |  |-  ( ph -> M e. ZZ ) | 
						
							| 6 |  | smfinfdmmbllem.6 |  |-  Z = ( ZZ>= ` M ) | 
						
							| 7 |  | smfinfdmmbllem.7 |  |-  ( ph -> S e. SAlg ) | 
						
							| 8 |  | smfinfdmmbllem.8 |  |-  ( ph -> F : Z --> ( SMblFn ` S ) ) | 
						
							| 9 |  | smfinfdmmbllem.9 |  |-  ( ( ph /\ n e. Z ) -> dom ( F ` n ) e. S ) | 
						
							| 10 |  | smfinfdmmbllem.10 |  |-  D = { x e. |^|_ n e. Z dom ( F ` n ) | E. y e. RR A. n e. Z y <_ ( ( F ` n ) ` x ) } | 
						
							| 11 |  | smfinfdmmbllem.11 |  |-  G = ( x e. D |-> inf ( ran ( n e. Z |-> ( ( F ` n ) ` x ) ) , RR , < ) ) | 
						
							| 12 |  | smfinfdmmbllem.12 |  |-  H = ( n e. Z |-> ( m e. NN |-> { x e. dom ( F ` n ) | -u m < ( ( F ` n ) ` x ) } ) ) | 
						
							| 13 | 7 | adantr |  |-  ( ( ph /\ n e. Z ) -> S e. SAlg ) | 
						
							| 14 | 8 | ffvelcdmda |  |-  ( ( ph /\ n e. Z ) -> ( F ` n ) e. ( SMblFn ` S ) ) | 
						
							| 15 |  | eqid |  |-  dom ( F ` n ) = dom ( F ` n ) | 
						
							| 16 | 13 14 15 | smff |  |-  ( ( ph /\ n e. Z ) -> ( F ` n ) : dom ( F ` n ) --> RR ) | 
						
							| 17 | 16 | frexr |  |-  ( ( ph /\ n e. Z ) -> ( F ` n ) : dom ( F ` n ) --> RR* ) | 
						
							| 18 | 1 2 3 4 17 10 11 12 | finfdm2 |  |-  ( ph -> dom G = U_ m e. NN |^|_ n e. Z ( ( H ` n ) ` m ) ) | 
						
							| 19 |  | nfcv |  |-  F/_ m S | 
						
							| 20 |  | nfcv |  |-  F/_ m NN | 
						
							| 21 |  | nnct |  |-  NN ~<_ _om | 
						
							| 22 | 21 | a1i |  |-  ( ph -> NN ~<_ _om ) | 
						
							| 23 |  | nfv |  |-  F/ n m e. NN | 
						
							| 24 | 1 23 | nfan |  |-  F/ n ( ph /\ m e. NN ) | 
						
							| 25 |  | nfcv |  |-  F/_ n S | 
						
							| 26 |  | nfcv |  |-  F/_ n Z | 
						
							| 27 | 7 | adantr |  |-  ( ( ph /\ m e. NN ) -> S e. SAlg ) | 
						
							| 28 | 6 | uzct |  |-  Z ~<_ _om | 
						
							| 29 | 28 | a1i |  |-  ( ( ph /\ m e. NN ) -> Z ~<_ _om ) | 
						
							| 30 | 5 6 | uzn0d |  |-  ( ph -> Z =/= (/) ) | 
						
							| 31 | 30 | adantr |  |-  ( ( ph /\ m e. NN ) -> Z =/= (/) ) | 
						
							| 32 | 27 | adantr |  |-  ( ( ( ph /\ m e. NN ) /\ n e. Z ) -> S e. SAlg ) | 
						
							| 33 | 9 | adantlr |  |-  ( ( ( ph /\ m e. NN ) /\ n e. Z ) -> dom ( F ` n ) e. S ) | 
						
							| 34 | 32 33 | salrestss |  |-  ( ( ( ph /\ m e. NN ) /\ n e. Z ) -> ( S |`t dom ( F ` n ) ) C_ S ) | 
						
							| 35 |  | nfv |  |-  F/ m n e. Z | 
						
							| 36 | 3 35 | nfan |  |-  F/ m ( ph /\ n e. Z ) | 
						
							| 37 |  | nfcv |  |-  F/_ x n | 
						
							| 38 | 4 37 | nffv |  |-  F/_ x ( F ` n ) | 
						
							| 39 | 14 | adantlr |  |-  ( ( ( ph /\ m e. NN ) /\ n e. Z ) -> ( F ` n ) e. ( SMblFn ` S ) ) | 
						
							| 40 |  | nnre |  |-  ( m e. NN -> m e. RR ) | 
						
							| 41 | 40 | renegcld |  |-  ( m e. NN -> -u m e. RR ) | 
						
							| 42 | 41 | rexrd |  |-  ( m e. NN -> -u m e. RR* ) | 
						
							| 43 | 42 | ad2antlr |  |-  ( ( ( ph /\ m e. NN ) /\ n e. Z ) -> -u m e. RR* ) | 
						
							| 44 | 38 32 39 15 43 | smfpimgtxr |  |-  ( ( ( ph /\ m e. NN ) /\ n e. Z ) -> { x e. dom ( F ` n ) | -u m < ( ( F ` n ) ` x ) } e. ( S |`t dom ( F ` n ) ) ) | 
						
							| 45 | 44 | an32s |  |-  ( ( ( ph /\ n e. Z ) /\ m e. NN ) -> { x e. dom ( F ` n ) | -u m < ( ( F ` n ) ` x ) } e. ( S |`t dom ( F ` n ) ) ) | 
						
							| 46 | 36 45 | fmptd2f |  |-  ( ( ph /\ n e. Z ) -> ( m e. NN |-> { x e. dom ( F ` n ) | -u m < ( ( F ` n ) ` x ) } ) : NN --> ( S |`t dom ( F ` n ) ) ) | 
						
							| 47 |  | simpr |  |-  ( ( ph /\ n e. Z ) -> n e. Z ) | 
						
							| 48 |  | nnex |  |-  NN e. _V | 
						
							| 49 | 48 | mptex |  |-  ( m e. NN |-> { x e. dom ( F ` n ) | -u m < ( ( F ` n ) ` x ) } ) e. _V | 
						
							| 50 | 12 | fvmpt2 |  |-  ( ( n e. Z /\ ( m e. NN |-> { x e. dom ( F ` n ) | -u m < ( ( F ` n ) ` x ) } ) e. _V ) -> ( H ` n ) = ( m e. NN |-> { x e. dom ( F ` n ) | -u m < ( ( F ` n ) ` x ) } ) ) | 
						
							| 51 | 47 49 50 | sylancl |  |-  ( ( ph /\ n e. Z ) -> ( H ` n ) = ( m e. NN |-> { x e. dom ( F ` n ) | -u m < ( ( F ` n ) ` x ) } ) ) | 
						
							| 52 | 51 | feq1d |  |-  ( ( ph /\ n e. Z ) -> ( ( H ` n ) : NN --> ( S |`t dom ( F ` n ) ) <-> ( m e. NN |-> { x e. dom ( F ` n ) | -u m < ( ( F ` n ) ` x ) } ) : NN --> ( S |`t dom ( F ` n ) ) ) ) | 
						
							| 53 | 46 52 | mpbird |  |-  ( ( ph /\ n e. Z ) -> ( H ` n ) : NN --> ( S |`t dom ( F ` n ) ) ) | 
						
							| 54 | 53 | adantlr |  |-  ( ( ( ph /\ m e. NN ) /\ n e. Z ) -> ( H ` n ) : NN --> ( S |`t dom ( F ` n ) ) ) | 
						
							| 55 |  | simplr |  |-  ( ( ( ph /\ m e. NN ) /\ n e. Z ) -> m e. NN ) | 
						
							| 56 | 54 55 | ffvelcdmd |  |-  ( ( ( ph /\ m e. NN ) /\ n e. Z ) -> ( ( H ` n ) ` m ) e. ( S |`t dom ( F ` n ) ) ) | 
						
							| 57 | 34 56 | sseldd |  |-  ( ( ( ph /\ m e. NN ) /\ n e. Z ) -> ( ( H ` n ) ` m ) e. S ) | 
						
							| 58 | 24 25 26 27 29 31 57 | saliinclf |  |-  ( ( ph /\ m e. NN ) -> |^|_ n e. Z ( ( H ` n ) ` m ) e. S ) | 
						
							| 59 | 3 19 20 7 22 58 | saliunclf |  |-  ( ph -> U_ m e. NN |^|_ n e. Z ( ( H ` n ) ` m ) e. S ) | 
						
							| 60 | 18 59 | eqeltrd |  |-  ( ph -> dom G e. S ) |