Metamath Proof Explorer


Theorem smfinfdmmbl

Description: If a countable set of sigma-measurable functions have domains in the sigma-algebra, then their infimum function has the domain in the sigma-algebra. This is the fifth statement of Proposition 121H of Fremlin1 p. 39 . (Contributed by Glauco Siliprandi, 1-Feb-2025)

Ref Expression
Hypotheses smfinfdmmbl.1
|- F/ n ph
smfinfdmmbl.2
|- F/ x ph
smfinfdmmbl.3
|- F/_ x F
smfinfdmmbl.4
|- ( ph -> M e. ZZ )
smfinfdmmbl.5
|- Z = ( ZZ>= ` M )
smfinfdmmbl.6
|- ( ph -> S e. SAlg )
smfinfdmmbl.7
|- ( ph -> F : Z --> ( SMblFn ` S ) )
smfinfdmmbl.8
|- ( ( ph /\ n e. Z ) -> dom ( F ` n ) e. S )
smfinfdmmbl.9
|- D = { x e. |^|_ n e. Z dom ( F ` n ) | E. y e. RR A. n e. Z y <_ ( ( F ` n ) ` x ) }
smfinfdmmbl.10
|- G = ( x e. D |-> inf ( ran ( n e. Z |-> ( ( F ` n ) ` x ) ) , RR , < ) )
Assertion smfinfdmmbl
|- ( ph -> dom G e. S )

Proof

Step Hyp Ref Expression
1 smfinfdmmbl.1
 |-  F/ n ph
2 smfinfdmmbl.2
 |-  F/ x ph
3 smfinfdmmbl.3
 |-  F/_ x F
4 smfinfdmmbl.4
 |-  ( ph -> M e. ZZ )
5 smfinfdmmbl.5
 |-  Z = ( ZZ>= ` M )
6 smfinfdmmbl.6
 |-  ( ph -> S e. SAlg )
7 smfinfdmmbl.7
 |-  ( ph -> F : Z --> ( SMblFn ` S ) )
8 smfinfdmmbl.8
 |-  ( ( ph /\ n e. Z ) -> dom ( F ` n ) e. S )
9 smfinfdmmbl.9
 |-  D = { x e. |^|_ n e. Z dom ( F ` n ) | E. y e. RR A. n e. Z y <_ ( ( F ` n ) ` x ) }
10 smfinfdmmbl.10
 |-  G = ( x e. D |-> inf ( ran ( n e. Z |-> ( ( F ` n ) ` x ) ) , RR , < ) )
11 nfv
 |-  F/ m ph
12 eqid
 |-  ( n e. Z |-> ( m e. NN |-> { x e. dom ( F ` n ) | -u m < ( ( F ` n ) ` x ) } ) ) = ( n e. Z |-> ( m e. NN |-> { x e. dom ( F ` n ) | -u m < ( ( F ` n ) ` x ) } ) )
13 1 2 11 3 4 5 6 7 8 9 10 12 smfinfdmmbllem
 |-  ( ph -> dom G e. S )