Description: If a countable set of sigma-measurable functions have domains in the sigma-algebra, then their infimum function has the domain in the sigma-algebra. This is the fifth statement of Proposition 121H of Fremlin1 p. 39 . (Contributed by Glauco Siliprandi, 1-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | smfinfdmmbl.1 | |- F/ n ph | |
| smfinfdmmbl.2 | |- F/ x ph | ||
| smfinfdmmbl.3 | |- F/_ x F | ||
| smfinfdmmbl.4 | |- ( ph -> M e. ZZ ) | ||
| smfinfdmmbl.5 | |- Z = ( ZZ>= ` M ) | ||
| smfinfdmmbl.6 | |- ( ph -> S e. SAlg ) | ||
| smfinfdmmbl.7 | |- ( ph -> F : Z --> ( SMblFn ` S ) ) | ||
| smfinfdmmbl.8 | |- ( ( ph /\ n e. Z ) -> dom ( F ` n ) e. S ) | ||
| smfinfdmmbl.9 | |- D = { x e. |^|_ n e. Z dom ( F ` n ) | E. y e. RR A. n e. Z y <_ ( ( F ` n ) ` x ) } | ||
| smfinfdmmbl.10 | |- G = ( x e. D |-> inf ( ran ( n e. Z |-> ( ( F ` n ) ` x ) ) , RR , < ) ) | ||
| Assertion | smfinfdmmbl | |- ( ph -> dom G e. S ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | smfinfdmmbl.1 | |- F/ n ph | |
| 2 | smfinfdmmbl.2 | |- F/ x ph | |
| 3 | smfinfdmmbl.3 | |- F/_ x F | |
| 4 | smfinfdmmbl.4 | |- ( ph -> M e. ZZ ) | |
| 5 | smfinfdmmbl.5 | |- Z = ( ZZ>= ` M ) | |
| 6 | smfinfdmmbl.6 | |- ( ph -> S e. SAlg ) | |
| 7 | smfinfdmmbl.7 | |- ( ph -> F : Z --> ( SMblFn ` S ) ) | |
| 8 | smfinfdmmbl.8 | |- ( ( ph /\ n e. Z ) -> dom ( F ` n ) e. S ) | |
| 9 | smfinfdmmbl.9 |  |-  D = { x e. |^|_ n e. Z dom ( F ` n ) | E. y e. RR A. n e. Z y <_ ( ( F ` n ) ` x ) } | |
| 10 | smfinfdmmbl.10 | |- G = ( x e. D |-> inf ( ran ( n e. Z |-> ( ( F ` n ) ` x ) ) , RR , < ) ) | |
| 11 | nfv | |- F/ m ph | |
| 12 | eqid |  |-  ( n e. Z |-> ( m e. NN |-> { x e. dom ( F ` n ) | -u m < ( ( F ` n ) ` x ) } ) ) = ( n e. Z |-> ( m e. NN |-> { x e. dom ( F ` n ) | -u m < ( ( F ` n ) ` x ) } ) ) | |
| 13 | 1 2 11 3 4 5 6 7 8 9 10 12 | smfinfdmmbllem | |- ( ph -> dom G e. S ) |