Description: If a countable set of sigma-measurable functions have domains in the sigma-algebra, then their infimum function has the domain in the sigma-algebra. This is the fifth statement of Proposition 121H of Fremlin1 p. 39 . (Contributed by Glauco Siliprandi, 1-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | smfinfdmmbl.1 | |- F/ n ph |
|
smfinfdmmbl.2 | |- F/ x ph |
||
smfinfdmmbl.3 | |- F/_ x F |
||
smfinfdmmbl.4 | |- ( ph -> M e. ZZ ) |
||
smfinfdmmbl.5 | |- Z = ( ZZ>= ` M ) |
||
smfinfdmmbl.6 | |- ( ph -> S e. SAlg ) |
||
smfinfdmmbl.7 | |- ( ph -> F : Z --> ( SMblFn ` S ) ) |
||
smfinfdmmbl.8 | |- ( ( ph /\ n e. Z ) -> dom ( F ` n ) e. S ) |
||
smfinfdmmbl.9 | |- D = { x e. |^|_ n e. Z dom ( F ` n ) | E. y e. RR A. n e. Z y <_ ( ( F ` n ) ` x ) } |
||
smfinfdmmbl.10 | |- G = ( x e. D |-> inf ( ran ( n e. Z |-> ( ( F ` n ) ` x ) ) , RR , < ) ) |
||
Assertion | smfinfdmmbl | |- ( ph -> dom G e. S ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smfinfdmmbl.1 | |- F/ n ph |
|
2 | smfinfdmmbl.2 | |- F/ x ph |
|
3 | smfinfdmmbl.3 | |- F/_ x F |
|
4 | smfinfdmmbl.4 | |- ( ph -> M e. ZZ ) |
|
5 | smfinfdmmbl.5 | |- Z = ( ZZ>= ` M ) |
|
6 | smfinfdmmbl.6 | |- ( ph -> S e. SAlg ) |
|
7 | smfinfdmmbl.7 | |- ( ph -> F : Z --> ( SMblFn ` S ) ) |
|
8 | smfinfdmmbl.8 | |- ( ( ph /\ n e. Z ) -> dom ( F ` n ) e. S ) |
|
9 | smfinfdmmbl.9 | |- D = { x e. |^|_ n e. Z dom ( F ` n ) | E. y e. RR A. n e. Z y <_ ( ( F ` n ) ` x ) } |
|
10 | smfinfdmmbl.10 | |- G = ( x e. D |-> inf ( ran ( n e. Z |-> ( ( F ` n ) ` x ) ) , RR , < ) ) |
|
11 | nfv | |- F/ m ph |
|
12 | eqid | |- ( n e. Z |-> ( m e. NN |-> { x e. dom ( F ` n ) | -u m < ( ( F ` n ) ` x ) } ) ) = ( n e. Z |-> ( m e. NN |-> { x e. dom ( F ` n ) | -u m < ( ( F ` n ) ` x ) } ) ) |
|
13 | 1 2 11 3 4 5 6 7 8 9 10 12 | smfinfdmmbllem | |- ( ph -> dom G e. S ) |