| Step | Hyp | Ref | Expression | 
						
							| 1 |  | snml.s | ⊢ 𝑆  =  ( 𝑟  ∈  ( ℤ≥ ‘ 2 )  ↦  { 𝑥  ∈  ℝ  ∣  ∀ 𝑏  ∈  ( 0 ... ( 𝑟  −  1 ) ) ( 𝑛  ∈  ℕ  ↦  ( ( ♯ ‘ { 𝑘  ∈  ( 1 ... 𝑛 )  ∣  ( ⌊ ‘ ( ( 𝑥  ·  ( 𝑟 ↑ 𝑘 ) )  mod  𝑟 ) )  =  𝑏 } )  /  𝑛 ) )  ⇝  ( 1  /  𝑟 ) } ) | 
						
							| 2 |  | snml.f | ⊢ 𝐹  =  ( 𝑛  ∈  ℕ  ↦  ( ( ♯ ‘ { 𝑘  ∈  ( 1 ... 𝑛 )  ∣  ( ⌊ ‘ ( ( 𝐴  ·  ( 𝑅 ↑ 𝑘 ) )  mod  𝑅 ) )  =  𝐵 } )  /  𝑛 ) ) | 
						
							| 3 | 1 | snmlval | ⊢ ( 𝐴  ∈  ( 𝑆 ‘ 𝑅 )  ↔  ( 𝑅  ∈  ( ℤ≥ ‘ 2 )  ∧  𝐴  ∈  ℝ  ∧  ∀ 𝑏  ∈  ( 0 ... ( 𝑅  −  1 ) ) ( 𝑛  ∈  ℕ  ↦  ( ( ♯ ‘ { 𝑘  ∈  ( 1 ... 𝑛 )  ∣  ( ⌊ ‘ ( ( 𝐴  ·  ( 𝑅 ↑ 𝑘 ) )  mod  𝑅 ) )  =  𝑏 } )  /  𝑛 ) )  ⇝  ( 1  /  𝑅 ) ) ) | 
						
							| 4 | 3 | simp3bi | ⊢ ( 𝐴  ∈  ( 𝑆 ‘ 𝑅 )  →  ∀ 𝑏  ∈  ( 0 ... ( 𝑅  −  1 ) ) ( 𝑛  ∈  ℕ  ↦  ( ( ♯ ‘ { 𝑘  ∈  ( 1 ... 𝑛 )  ∣  ( ⌊ ‘ ( ( 𝐴  ·  ( 𝑅 ↑ 𝑘 ) )  mod  𝑅 ) )  =  𝑏 } )  /  𝑛 ) )  ⇝  ( 1  /  𝑅 ) ) | 
						
							| 5 |  | eqeq2 | ⊢ ( 𝑏  =  𝐵  →  ( ( ⌊ ‘ ( ( 𝐴  ·  ( 𝑅 ↑ 𝑘 ) )  mod  𝑅 ) )  =  𝑏  ↔  ( ⌊ ‘ ( ( 𝐴  ·  ( 𝑅 ↑ 𝑘 ) )  mod  𝑅 ) )  =  𝐵 ) ) | 
						
							| 6 | 5 | rabbidv | ⊢ ( 𝑏  =  𝐵  →  { 𝑘  ∈  ( 1 ... 𝑛 )  ∣  ( ⌊ ‘ ( ( 𝐴  ·  ( 𝑅 ↑ 𝑘 ) )  mod  𝑅 ) )  =  𝑏 }  =  { 𝑘  ∈  ( 1 ... 𝑛 )  ∣  ( ⌊ ‘ ( ( 𝐴  ·  ( 𝑅 ↑ 𝑘 ) )  mod  𝑅 ) )  =  𝐵 } ) | 
						
							| 7 | 6 | fveq2d | ⊢ ( 𝑏  =  𝐵  →  ( ♯ ‘ { 𝑘  ∈  ( 1 ... 𝑛 )  ∣  ( ⌊ ‘ ( ( 𝐴  ·  ( 𝑅 ↑ 𝑘 ) )  mod  𝑅 ) )  =  𝑏 } )  =  ( ♯ ‘ { 𝑘  ∈  ( 1 ... 𝑛 )  ∣  ( ⌊ ‘ ( ( 𝐴  ·  ( 𝑅 ↑ 𝑘 ) )  mod  𝑅 ) )  =  𝐵 } ) ) | 
						
							| 8 | 7 | oveq1d | ⊢ ( 𝑏  =  𝐵  →  ( ( ♯ ‘ { 𝑘  ∈  ( 1 ... 𝑛 )  ∣  ( ⌊ ‘ ( ( 𝐴  ·  ( 𝑅 ↑ 𝑘 ) )  mod  𝑅 ) )  =  𝑏 } )  /  𝑛 )  =  ( ( ♯ ‘ { 𝑘  ∈  ( 1 ... 𝑛 )  ∣  ( ⌊ ‘ ( ( 𝐴  ·  ( 𝑅 ↑ 𝑘 ) )  mod  𝑅 ) )  =  𝐵 } )  /  𝑛 ) ) | 
						
							| 9 | 8 | mpteq2dv | ⊢ ( 𝑏  =  𝐵  →  ( 𝑛  ∈  ℕ  ↦  ( ( ♯ ‘ { 𝑘  ∈  ( 1 ... 𝑛 )  ∣  ( ⌊ ‘ ( ( 𝐴  ·  ( 𝑅 ↑ 𝑘 ) )  mod  𝑅 ) )  =  𝑏 } )  /  𝑛 ) )  =  ( 𝑛  ∈  ℕ  ↦  ( ( ♯ ‘ { 𝑘  ∈  ( 1 ... 𝑛 )  ∣  ( ⌊ ‘ ( ( 𝐴  ·  ( 𝑅 ↑ 𝑘 ) )  mod  𝑅 ) )  =  𝐵 } )  /  𝑛 ) ) ) | 
						
							| 10 | 9 2 | eqtr4di | ⊢ ( 𝑏  =  𝐵  →  ( 𝑛  ∈  ℕ  ↦  ( ( ♯ ‘ { 𝑘  ∈  ( 1 ... 𝑛 )  ∣  ( ⌊ ‘ ( ( 𝐴  ·  ( 𝑅 ↑ 𝑘 ) )  mod  𝑅 ) )  =  𝑏 } )  /  𝑛 ) )  =  𝐹 ) | 
						
							| 11 | 10 | breq1d | ⊢ ( 𝑏  =  𝐵  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( ♯ ‘ { 𝑘  ∈  ( 1 ... 𝑛 )  ∣  ( ⌊ ‘ ( ( 𝐴  ·  ( 𝑅 ↑ 𝑘 ) )  mod  𝑅 ) )  =  𝑏 } )  /  𝑛 ) )  ⇝  ( 1  /  𝑅 )  ↔  𝐹  ⇝  ( 1  /  𝑅 ) ) ) | 
						
							| 12 | 11 | rspccva | ⊢ ( ( ∀ 𝑏  ∈  ( 0 ... ( 𝑅  −  1 ) ) ( 𝑛  ∈  ℕ  ↦  ( ( ♯ ‘ { 𝑘  ∈  ( 1 ... 𝑛 )  ∣  ( ⌊ ‘ ( ( 𝐴  ·  ( 𝑅 ↑ 𝑘 ) )  mod  𝑅 ) )  =  𝑏 } )  /  𝑛 ) )  ⇝  ( 1  /  𝑅 )  ∧  𝐵  ∈  ( 0 ... ( 𝑅  −  1 ) ) )  →  𝐹  ⇝  ( 1  /  𝑅 ) ) | 
						
							| 13 | 4 12 | sylan | ⊢ ( ( 𝐴  ∈  ( 𝑆 ‘ 𝑅 )  ∧  𝐵  ∈  ( 0 ... ( 𝑅  −  1 ) ) )  →  𝐹  ⇝  ( 1  /  𝑅 ) ) |