| Step | Hyp | Ref | Expression | 
						
							| 1 |  | snml.s |  |-  S = ( r e. ( ZZ>= ` 2 ) |-> { x e. RR | A. b e. ( 0 ... ( r - 1 ) ) ( n e. NN |-> ( ( # ` { k e. ( 1 ... n ) | ( |_ ` ( ( x x. ( r ^ k ) ) mod r ) ) = b } ) / n ) ) ~~> ( 1 / r ) } ) | 
						
							| 2 |  | snml.f |  |-  F = ( n e. NN |-> ( ( # ` { k e. ( 1 ... n ) | ( |_ ` ( ( A x. ( R ^ k ) ) mod R ) ) = B } ) / n ) ) | 
						
							| 3 | 1 | snmlval |  |-  ( A e. ( S ` R ) <-> ( R e. ( ZZ>= ` 2 ) /\ A e. RR /\ A. b e. ( 0 ... ( R - 1 ) ) ( n e. NN |-> ( ( # ` { k e. ( 1 ... n ) | ( |_ ` ( ( A x. ( R ^ k ) ) mod R ) ) = b } ) / n ) ) ~~> ( 1 / R ) ) ) | 
						
							| 4 | 3 | simp3bi |  |-  ( A e. ( S ` R ) -> A. b e. ( 0 ... ( R - 1 ) ) ( n e. NN |-> ( ( # ` { k e. ( 1 ... n ) | ( |_ ` ( ( A x. ( R ^ k ) ) mod R ) ) = b } ) / n ) ) ~~> ( 1 / R ) ) | 
						
							| 5 |  | eqeq2 |  |-  ( b = B -> ( ( |_ ` ( ( A x. ( R ^ k ) ) mod R ) ) = b <-> ( |_ ` ( ( A x. ( R ^ k ) ) mod R ) ) = B ) ) | 
						
							| 6 | 5 | rabbidv |  |-  ( b = B -> { k e. ( 1 ... n ) | ( |_ ` ( ( A x. ( R ^ k ) ) mod R ) ) = b } = { k e. ( 1 ... n ) | ( |_ ` ( ( A x. ( R ^ k ) ) mod R ) ) = B } ) | 
						
							| 7 | 6 | fveq2d |  |-  ( b = B -> ( # ` { k e. ( 1 ... n ) | ( |_ ` ( ( A x. ( R ^ k ) ) mod R ) ) = b } ) = ( # ` { k e. ( 1 ... n ) | ( |_ ` ( ( A x. ( R ^ k ) ) mod R ) ) = B } ) ) | 
						
							| 8 | 7 | oveq1d |  |-  ( b = B -> ( ( # ` { k e. ( 1 ... n ) | ( |_ ` ( ( A x. ( R ^ k ) ) mod R ) ) = b } ) / n ) = ( ( # ` { k e. ( 1 ... n ) | ( |_ ` ( ( A x. ( R ^ k ) ) mod R ) ) = B } ) / n ) ) | 
						
							| 9 | 8 | mpteq2dv |  |-  ( b = B -> ( n e. NN |-> ( ( # ` { k e. ( 1 ... n ) | ( |_ ` ( ( A x. ( R ^ k ) ) mod R ) ) = b } ) / n ) ) = ( n e. NN |-> ( ( # ` { k e. ( 1 ... n ) | ( |_ ` ( ( A x. ( R ^ k ) ) mod R ) ) = B } ) / n ) ) ) | 
						
							| 10 | 9 2 | eqtr4di |  |-  ( b = B -> ( n e. NN |-> ( ( # ` { k e. ( 1 ... n ) | ( |_ ` ( ( A x. ( R ^ k ) ) mod R ) ) = b } ) / n ) ) = F ) | 
						
							| 11 | 10 | breq1d |  |-  ( b = B -> ( ( n e. NN |-> ( ( # ` { k e. ( 1 ... n ) | ( |_ ` ( ( A x. ( R ^ k ) ) mod R ) ) = b } ) / n ) ) ~~> ( 1 / R ) <-> F ~~> ( 1 / R ) ) ) | 
						
							| 12 | 11 | rspccva |  |-  ( ( A. b e. ( 0 ... ( R - 1 ) ) ( n e. NN |-> ( ( # ` { k e. ( 1 ... n ) | ( |_ ` ( ( A x. ( R ^ k ) ) mod R ) ) = b } ) / n ) ) ~~> ( 1 / R ) /\ B e. ( 0 ... ( R - 1 ) ) ) -> F ~~> ( 1 / R ) ) | 
						
							| 13 | 4 12 | sylan |  |-  ( ( A e. ( S ` R ) /\ B e. ( 0 ... ( R - 1 ) ) ) -> F ~~> ( 1 / R ) ) |