| Step | Hyp | Ref | Expression | 
						
							| 1 |  | snml.s |  |-  S = ( r e. ( ZZ>= ` 2 ) |-> { x e. RR | A. b e. ( 0 ... ( r - 1 ) ) ( n e. NN |-> ( ( # ` { k e. ( 1 ... n ) | ( |_ ` ( ( x x. ( r ^ k ) ) mod r ) ) = b } ) / n ) ) ~~> ( 1 / r ) } ) | 
						
							| 2 |  | oveq1 |  |-  ( r = R -> ( r - 1 ) = ( R - 1 ) ) | 
						
							| 3 | 2 | oveq2d |  |-  ( r = R -> ( 0 ... ( r - 1 ) ) = ( 0 ... ( R - 1 ) ) ) | 
						
							| 4 |  | oveq1 |  |-  ( r = R -> ( r ^ k ) = ( R ^ k ) ) | 
						
							| 5 | 4 | oveq2d |  |-  ( r = R -> ( x x. ( r ^ k ) ) = ( x x. ( R ^ k ) ) ) | 
						
							| 6 |  | id |  |-  ( r = R -> r = R ) | 
						
							| 7 | 5 6 | oveq12d |  |-  ( r = R -> ( ( x x. ( r ^ k ) ) mod r ) = ( ( x x. ( R ^ k ) ) mod R ) ) | 
						
							| 8 | 7 | fveqeq2d |  |-  ( r = R -> ( ( |_ ` ( ( x x. ( r ^ k ) ) mod r ) ) = b <-> ( |_ ` ( ( x x. ( R ^ k ) ) mod R ) ) = b ) ) | 
						
							| 9 | 8 | rabbidv |  |-  ( r = R -> { k e. ( 1 ... n ) | ( |_ ` ( ( x x. ( r ^ k ) ) mod r ) ) = b } = { k e. ( 1 ... n ) | ( |_ ` ( ( x x. ( R ^ k ) ) mod R ) ) = b } ) | 
						
							| 10 | 9 | fveq2d |  |-  ( r = R -> ( # ` { k e. ( 1 ... n ) | ( |_ ` ( ( x x. ( r ^ k ) ) mod r ) ) = b } ) = ( # ` { k e. ( 1 ... n ) | ( |_ ` ( ( x x. ( R ^ k ) ) mod R ) ) = b } ) ) | 
						
							| 11 | 10 | oveq1d |  |-  ( r = R -> ( ( # ` { k e. ( 1 ... n ) | ( |_ ` ( ( x x. ( r ^ k ) ) mod r ) ) = b } ) / n ) = ( ( # ` { k e. ( 1 ... n ) | ( |_ ` ( ( x x. ( R ^ k ) ) mod R ) ) = b } ) / n ) ) | 
						
							| 12 | 11 | mpteq2dv |  |-  ( r = R -> ( n e. NN |-> ( ( # ` { k e. ( 1 ... n ) | ( |_ ` ( ( x x. ( r ^ k ) ) mod r ) ) = b } ) / n ) ) = ( n e. NN |-> ( ( # ` { k e. ( 1 ... n ) | ( |_ ` ( ( x x. ( R ^ k ) ) mod R ) ) = b } ) / n ) ) ) | 
						
							| 13 |  | oveq2 |  |-  ( r = R -> ( 1 / r ) = ( 1 / R ) ) | 
						
							| 14 | 12 13 | breq12d |  |-  ( r = R -> ( ( n e. NN |-> ( ( # ` { k e. ( 1 ... n ) | ( |_ ` ( ( x x. ( r ^ k ) ) mod r ) ) = b } ) / n ) ) ~~> ( 1 / r ) <-> ( n e. NN |-> ( ( # ` { k e. ( 1 ... n ) | ( |_ ` ( ( x x. ( R ^ k ) ) mod R ) ) = b } ) / n ) ) ~~> ( 1 / R ) ) ) | 
						
							| 15 | 3 14 | raleqbidv |  |-  ( r = R -> ( A. b e. ( 0 ... ( r - 1 ) ) ( n e. NN |-> ( ( # ` { k e. ( 1 ... n ) | ( |_ ` ( ( x x. ( r ^ k ) ) mod r ) ) = b } ) / n ) ) ~~> ( 1 / r ) <-> A. b e. ( 0 ... ( R - 1 ) ) ( n e. NN |-> ( ( # ` { k e. ( 1 ... n ) | ( |_ ` ( ( x x. ( R ^ k ) ) mod R ) ) = b } ) / n ) ) ~~> ( 1 / R ) ) ) | 
						
							| 16 | 15 | rabbidv |  |-  ( r = R -> { x e. RR | A. b e. ( 0 ... ( r - 1 ) ) ( n e. NN |-> ( ( # ` { k e. ( 1 ... n ) | ( |_ ` ( ( x x. ( r ^ k ) ) mod r ) ) = b } ) / n ) ) ~~> ( 1 / r ) } = { x e. RR | A. b e. ( 0 ... ( R - 1 ) ) ( n e. NN |-> ( ( # ` { k e. ( 1 ... n ) | ( |_ ` ( ( x x. ( R ^ k ) ) mod R ) ) = b } ) / n ) ) ~~> ( 1 / R ) } ) | 
						
							| 17 |  | reex |  |-  RR e. _V | 
						
							| 18 | 17 | rabex |  |-  { x e. RR | A. b e. ( 0 ... ( R - 1 ) ) ( n e. NN |-> ( ( # ` { k e. ( 1 ... n ) | ( |_ ` ( ( x x. ( R ^ k ) ) mod R ) ) = b } ) / n ) ) ~~> ( 1 / R ) } e. _V | 
						
							| 19 | 16 1 18 | fvmpt |  |-  ( R e. ( ZZ>= ` 2 ) -> ( S ` R ) = { x e. RR | A. b e. ( 0 ... ( R - 1 ) ) ( n e. NN |-> ( ( # ` { k e. ( 1 ... n ) | ( |_ ` ( ( x x. ( R ^ k ) ) mod R ) ) = b } ) / n ) ) ~~> ( 1 / R ) } ) | 
						
							| 20 | 19 | eleq2d |  |-  ( R e. ( ZZ>= ` 2 ) -> ( A e. ( S ` R ) <-> A e. { x e. RR | A. b e. ( 0 ... ( R - 1 ) ) ( n e. NN |-> ( ( # ` { k e. ( 1 ... n ) | ( |_ ` ( ( x x. ( R ^ k ) ) mod R ) ) = b } ) / n ) ) ~~> ( 1 / R ) } ) ) | 
						
							| 21 |  | oveq1 |  |-  ( x = A -> ( x x. ( R ^ k ) ) = ( A x. ( R ^ k ) ) ) | 
						
							| 22 | 21 | fvoveq1d |  |-  ( x = A -> ( |_ ` ( ( x x. ( R ^ k ) ) mod R ) ) = ( |_ ` ( ( A x. ( R ^ k ) ) mod R ) ) ) | 
						
							| 23 | 22 | eqeq1d |  |-  ( x = A -> ( ( |_ ` ( ( x x. ( R ^ k ) ) mod R ) ) = b <-> ( |_ ` ( ( A x. ( R ^ k ) ) mod R ) ) = b ) ) | 
						
							| 24 | 23 | rabbidv |  |-  ( x = A -> { k e. ( 1 ... n ) | ( |_ ` ( ( x x. ( R ^ k ) ) mod R ) ) = b } = { k e. ( 1 ... n ) | ( |_ ` ( ( A x. ( R ^ k ) ) mod R ) ) = b } ) | 
						
							| 25 | 24 | fveq2d |  |-  ( x = A -> ( # ` { k e. ( 1 ... n ) | ( |_ ` ( ( x x. ( R ^ k ) ) mod R ) ) = b } ) = ( # ` { k e. ( 1 ... n ) | ( |_ ` ( ( A x. ( R ^ k ) ) mod R ) ) = b } ) ) | 
						
							| 26 | 25 | oveq1d |  |-  ( x = A -> ( ( # ` { k e. ( 1 ... n ) | ( |_ ` ( ( x x. ( R ^ k ) ) mod R ) ) = b } ) / n ) = ( ( # ` { k e. ( 1 ... n ) | ( |_ ` ( ( A x. ( R ^ k ) ) mod R ) ) = b } ) / n ) ) | 
						
							| 27 | 26 | mpteq2dv |  |-  ( x = A -> ( n e. NN |-> ( ( # ` { k e. ( 1 ... n ) | ( |_ ` ( ( x x. ( R ^ k ) ) mod R ) ) = b } ) / n ) ) = ( n e. NN |-> ( ( # ` { k e. ( 1 ... n ) | ( |_ ` ( ( A x. ( R ^ k ) ) mod R ) ) = b } ) / n ) ) ) | 
						
							| 28 | 27 | breq1d |  |-  ( x = A -> ( ( n e. NN |-> ( ( # ` { k e. ( 1 ... n ) | ( |_ ` ( ( x x. ( R ^ k ) ) mod R ) ) = b } ) / n ) ) ~~> ( 1 / R ) <-> ( n e. NN |-> ( ( # ` { k e. ( 1 ... n ) | ( |_ ` ( ( A x. ( R ^ k ) ) mod R ) ) = b } ) / n ) ) ~~> ( 1 / R ) ) ) | 
						
							| 29 | 28 | ralbidv |  |-  ( x = A -> ( A. b e. ( 0 ... ( R - 1 ) ) ( n e. NN |-> ( ( # ` { k e. ( 1 ... n ) | ( |_ ` ( ( x x. ( R ^ k ) ) mod R ) ) = b } ) / n ) ) ~~> ( 1 / R ) <-> A. b e. ( 0 ... ( R - 1 ) ) ( n e. NN |-> ( ( # ` { k e. ( 1 ... n ) | ( |_ ` ( ( A x. ( R ^ k ) ) mod R ) ) = b } ) / n ) ) ~~> ( 1 / R ) ) ) | 
						
							| 30 | 29 | elrab |  |-  ( A e. { x e. RR | A. b e. ( 0 ... ( R - 1 ) ) ( n e. NN |-> ( ( # ` { k e. ( 1 ... n ) | ( |_ ` ( ( x x. ( R ^ k ) ) mod R ) ) = b } ) / n ) ) ~~> ( 1 / R ) } <-> ( A e. RR /\ A. b e. ( 0 ... ( R - 1 ) ) ( n e. NN |-> ( ( # ` { k e. ( 1 ... n ) | ( |_ ` ( ( A x. ( R ^ k ) ) mod R ) ) = b } ) / n ) ) ~~> ( 1 / R ) ) ) | 
						
							| 31 | 20 30 | bitrdi |  |-  ( R e. ( ZZ>= ` 2 ) -> ( A e. ( S ` R ) <-> ( A e. RR /\ A. b e. ( 0 ... ( R - 1 ) ) ( n e. NN |-> ( ( # ` { k e. ( 1 ... n ) | ( |_ ` ( ( A x. ( R ^ k ) ) mod R ) ) = b } ) / n ) ) ~~> ( 1 / R ) ) ) ) | 
						
							| 32 | 31 | pm5.32i |  |-  ( ( R e. ( ZZ>= ` 2 ) /\ A e. ( S ` R ) ) <-> ( R e. ( ZZ>= ` 2 ) /\ ( A e. RR /\ A. b e. ( 0 ... ( R - 1 ) ) ( n e. NN |-> ( ( # ` { k e. ( 1 ... n ) | ( |_ ` ( ( A x. ( R ^ k ) ) mod R ) ) = b } ) / n ) ) ~~> ( 1 / R ) ) ) ) | 
						
							| 33 | 1 | dmmptss |  |-  dom S C_ ( ZZ>= ` 2 ) | 
						
							| 34 |  | elfvdm |  |-  ( A e. ( S ` R ) -> R e. dom S ) | 
						
							| 35 | 33 34 | sselid |  |-  ( A e. ( S ` R ) -> R e. ( ZZ>= ` 2 ) ) | 
						
							| 36 | 35 | pm4.71ri |  |-  ( A e. ( S ` R ) <-> ( R e. ( ZZ>= ` 2 ) /\ A e. ( S ` R ) ) ) | 
						
							| 37 |  | 3anass |  |-  ( ( R e. ( ZZ>= ` 2 ) /\ A e. RR /\ A. b e. ( 0 ... ( R - 1 ) ) ( n e. NN |-> ( ( # ` { k e. ( 1 ... n ) | ( |_ ` ( ( A x. ( R ^ k ) ) mod R ) ) = b } ) / n ) ) ~~> ( 1 / R ) ) <-> ( R e. ( ZZ>= ` 2 ) /\ ( A e. RR /\ A. b e. ( 0 ... ( R - 1 ) ) ( n e. NN |-> ( ( # ` { k e. ( 1 ... n ) | ( |_ ` ( ( A x. ( R ^ k ) ) mod R ) ) = b } ) / n ) ) ~~> ( 1 / R ) ) ) ) | 
						
							| 38 | 32 36 37 | 3bitr4i |  |-  ( A e. ( S ` R ) <-> ( R e. ( ZZ>= ` 2 ) /\ A e. RR /\ A. b e. ( 0 ... ( R - 1 ) ) ( n e. NN |-> ( ( # ` { k e. ( 1 ... n ) | ( |_ ` ( ( A x. ( R ^ k ) ) mod R ) ) = b } ) / n ) ) ~~> ( 1 / R ) ) ) |