| Step | Hyp | Ref | Expression | 
						
							| 1 |  | snml.s | ⊢ 𝑆  =  ( 𝑟  ∈  ( ℤ≥ ‘ 2 )  ↦  { 𝑥  ∈  ℝ  ∣  ∀ 𝑏  ∈  ( 0 ... ( 𝑟  −  1 ) ) ( 𝑛  ∈  ℕ  ↦  ( ( ♯ ‘ { 𝑘  ∈  ( 1 ... 𝑛 )  ∣  ( ⌊ ‘ ( ( 𝑥  ·  ( 𝑟 ↑ 𝑘 ) )  mod  𝑟 ) )  =  𝑏 } )  /  𝑛 ) )  ⇝  ( 1  /  𝑟 ) } ) | 
						
							| 2 |  | oveq1 | ⊢ ( 𝑟  =  𝑅  →  ( 𝑟  −  1 )  =  ( 𝑅  −  1 ) ) | 
						
							| 3 | 2 | oveq2d | ⊢ ( 𝑟  =  𝑅  →  ( 0 ... ( 𝑟  −  1 ) )  =  ( 0 ... ( 𝑅  −  1 ) ) ) | 
						
							| 4 |  | oveq1 | ⊢ ( 𝑟  =  𝑅  →  ( 𝑟 ↑ 𝑘 )  =  ( 𝑅 ↑ 𝑘 ) ) | 
						
							| 5 | 4 | oveq2d | ⊢ ( 𝑟  =  𝑅  →  ( 𝑥  ·  ( 𝑟 ↑ 𝑘 ) )  =  ( 𝑥  ·  ( 𝑅 ↑ 𝑘 ) ) ) | 
						
							| 6 |  | id | ⊢ ( 𝑟  =  𝑅  →  𝑟  =  𝑅 ) | 
						
							| 7 | 5 6 | oveq12d | ⊢ ( 𝑟  =  𝑅  →  ( ( 𝑥  ·  ( 𝑟 ↑ 𝑘 ) )  mod  𝑟 )  =  ( ( 𝑥  ·  ( 𝑅 ↑ 𝑘 ) )  mod  𝑅 ) ) | 
						
							| 8 | 7 | fveqeq2d | ⊢ ( 𝑟  =  𝑅  →  ( ( ⌊ ‘ ( ( 𝑥  ·  ( 𝑟 ↑ 𝑘 ) )  mod  𝑟 ) )  =  𝑏  ↔  ( ⌊ ‘ ( ( 𝑥  ·  ( 𝑅 ↑ 𝑘 ) )  mod  𝑅 ) )  =  𝑏 ) ) | 
						
							| 9 | 8 | rabbidv | ⊢ ( 𝑟  =  𝑅  →  { 𝑘  ∈  ( 1 ... 𝑛 )  ∣  ( ⌊ ‘ ( ( 𝑥  ·  ( 𝑟 ↑ 𝑘 ) )  mod  𝑟 ) )  =  𝑏 }  =  { 𝑘  ∈  ( 1 ... 𝑛 )  ∣  ( ⌊ ‘ ( ( 𝑥  ·  ( 𝑅 ↑ 𝑘 ) )  mod  𝑅 ) )  =  𝑏 } ) | 
						
							| 10 | 9 | fveq2d | ⊢ ( 𝑟  =  𝑅  →  ( ♯ ‘ { 𝑘  ∈  ( 1 ... 𝑛 )  ∣  ( ⌊ ‘ ( ( 𝑥  ·  ( 𝑟 ↑ 𝑘 ) )  mod  𝑟 ) )  =  𝑏 } )  =  ( ♯ ‘ { 𝑘  ∈  ( 1 ... 𝑛 )  ∣  ( ⌊ ‘ ( ( 𝑥  ·  ( 𝑅 ↑ 𝑘 ) )  mod  𝑅 ) )  =  𝑏 } ) ) | 
						
							| 11 | 10 | oveq1d | ⊢ ( 𝑟  =  𝑅  →  ( ( ♯ ‘ { 𝑘  ∈  ( 1 ... 𝑛 )  ∣  ( ⌊ ‘ ( ( 𝑥  ·  ( 𝑟 ↑ 𝑘 ) )  mod  𝑟 ) )  =  𝑏 } )  /  𝑛 )  =  ( ( ♯ ‘ { 𝑘  ∈  ( 1 ... 𝑛 )  ∣  ( ⌊ ‘ ( ( 𝑥  ·  ( 𝑅 ↑ 𝑘 ) )  mod  𝑅 ) )  =  𝑏 } )  /  𝑛 ) ) | 
						
							| 12 | 11 | mpteq2dv | ⊢ ( 𝑟  =  𝑅  →  ( 𝑛  ∈  ℕ  ↦  ( ( ♯ ‘ { 𝑘  ∈  ( 1 ... 𝑛 )  ∣  ( ⌊ ‘ ( ( 𝑥  ·  ( 𝑟 ↑ 𝑘 ) )  mod  𝑟 ) )  =  𝑏 } )  /  𝑛 ) )  =  ( 𝑛  ∈  ℕ  ↦  ( ( ♯ ‘ { 𝑘  ∈  ( 1 ... 𝑛 )  ∣  ( ⌊ ‘ ( ( 𝑥  ·  ( 𝑅 ↑ 𝑘 ) )  mod  𝑅 ) )  =  𝑏 } )  /  𝑛 ) ) ) | 
						
							| 13 |  | oveq2 | ⊢ ( 𝑟  =  𝑅  →  ( 1  /  𝑟 )  =  ( 1  /  𝑅 ) ) | 
						
							| 14 | 12 13 | breq12d | ⊢ ( 𝑟  =  𝑅  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( ♯ ‘ { 𝑘  ∈  ( 1 ... 𝑛 )  ∣  ( ⌊ ‘ ( ( 𝑥  ·  ( 𝑟 ↑ 𝑘 ) )  mod  𝑟 ) )  =  𝑏 } )  /  𝑛 ) )  ⇝  ( 1  /  𝑟 )  ↔  ( 𝑛  ∈  ℕ  ↦  ( ( ♯ ‘ { 𝑘  ∈  ( 1 ... 𝑛 )  ∣  ( ⌊ ‘ ( ( 𝑥  ·  ( 𝑅 ↑ 𝑘 ) )  mod  𝑅 ) )  =  𝑏 } )  /  𝑛 ) )  ⇝  ( 1  /  𝑅 ) ) ) | 
						
							| 15 | 3 14 | raleqbidv | ⊢ ( 𝑟  =  𝑅  →  ( ∀ 𝑏  ∈  ( 0 ... ( 𝑟  −  1 ) ) ( 𝑛  ∈  ℕ  ↦  ( ( ♯ ‘ { 𝑘  ∈  ( 1 ... 𝑛 )  ∣  ( ⌊ ‘ ( ( 𝑥  ·  ( 𝑟 ↑ 𝑘 ) )  mod  𝑟 ) )  =  𝑏 } )  /  𝑛 ) )  ⇝  ( 1  /  𝑟 )  ↔  ∀ 𝑏  ∈  ( 0 ... ( 𝑅  −  1 ) ) ( 𝑛  ∈  ℕ  ↦  ( ( ♯ ‘ { 𝑘  ∈  ( 1 ... 𝑛 )  ∣  ( ⌊ ‘ ( ( 𝑥  ·  ( 𝑅 ↑ 𝑘 ) )  mod  𝑅 ) )  =  𝑏 } )  /  𝑛 ) )  ⇝  ( 1  /  𝑅 ) ) ) | 
						
							| 16 | 15 | rabbidv | ⊢ ( 𝑟  =  𝑅  →  { 𝑥  ∈  ℝ  ∣  ∀ 𝑏  ∈  ( 0 ... ( 𝑟  −  1 ) ) ( 𝑛  ∈  ℕ  ↦  ( ( ♯ ‘ { 𝑘  ∈  ( 1 ... 𝑛 )  ∣  ( ⌊ ‘ ( ( 𝑥  ·  ( 𝑟 ↑ 𝑘 ) )  mod  𝑟 ) )  =  𝑏 } )  /  𝑛 ) )  ⇝  ( 1  /  𝑟 ) }  =  { 𝑥  ∈  ℝ  ∣  ∀ 𝑏  ∈  ( 0 ... ( 𝑅  −  1 ) ) ( 𝑛  ∈  ℕ  ↦  ( ( ♯ ‘ { 𝑘  ∈  ( 1 ... 𝑛 )  ∣  ( ⌊ ‘ ( ( 𝑥  ·  ( 𝑅 ↑ 𝑘 ) )  mod  𝑅 ) )  =  𝑏 } )  /  𝑛 ) )  ⇝  ( 1  /  𝑅 ) } ) | 
						
							| 17 |  | reex | ⊢ ℝ  ∈  V | 
						
							| 18 | 17 | rabex | ⊢ { 𝑥  ∈  ℝ  ∣  ∀ 𝑏  ∈  ( 0 ... ( 𝑅  −  1 ) ) ( 𝑛  ∈  ℕ  ↦  ( ( ♯ ‘ { 𝑘  ∈  ( 1 ... 𝑛 )  ∣  ( ⌊ ‘ ( ( 𝑥  ·  ( 𝑅 ↑ 𝑘 ) )  mod  𝑅 ) )  =  𝑏 } )  /  𝑛 ) )  ⇝  ( 1  /  𝑅 ) }  ∈  V | 
						
							| 19 | 16 1 18 | fvmpt | ⊢ ( 𝑅  ∈  ( ℤ≥ ‘ 2 )  →  ( 𝑆 ‘ 𝑅 )  =  { 𝑥  ∈  ℝ  ∣  ∀ 𝑏  ∈  ( 0 ... ( 𝑅  −  1 ) ) ( 𝑛  ∈  ℕ  ↦  ( ( ♯ ‘ { 𝑘  ∈  ( 1 ... 𝑛 )  ∣  ( ⌊ ‘ ( ( 𝑥  ·  ( 𝑅 ↑ 𝑘 ) )  mod  𝑅 ) )  =  𝑏 } )  /  𝑛 ) )  ⇝  ( 1  /  𝑅 ) } ) | 
						
							| 20 | 19 | eleq2d | ⊢ ( 𝑅  ∈  ( ℤ≥ ‘ 2 )  →  ( 𝐴  ∈  ( 𝑆 ‘ 𝑅 )  ↔  𝐴  ∈  { 𝑥  ∈  ℝ  ∣  ∀ 𝑏  ∈  ( 0 ... ( 𝑅  −  1 ) ) ( 𝑛  ∈  ℕ  ↦  ( ( ♯ ‘ { 𝑘  ∈  ( 1 ... 𝑛 )  ∣  ( ⌊ ‘ ( ( 𝑥  ·  ( 𝑅 ↑ 𝑘 ) )  mod  𝑅 ) )  =  𝑏 } )  /  𝑛 ) )  ⇝  ( 1  /  𝑅 ) } ) ) | 
						
							| 21 |  | oveq1 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑥  ·  ( 𝑅 ↑ 𝑘 ) )  =  ( 𝐴  ·  ( 𝑅 ↑ 𝑘 ) ) ) | 
						
							| 22 | 21 | fvoveq1d | ⊢ ( 𝑥  =  𝐴  →  ( ⌊ ‘ ( ( 𝑥  ·  ( 𝑅 ↑ 𝑘 ) )  mod  𝑅 ) )  =  ( ⌊ ‘ ( ( 𝐴  ·  ( 𝑅 ↑ 𝑘 ) )  mod  𝑅 ) ) ) | 
						
							| 23 | 22 | eqeq1d | ⊢ ( 𝑥  =  𝐴  →  ( ( ⌊ ‘ ( ( 𝑥  ·  ( 𝑅 ↑ 𝑘 ) )  mod  𝑅 ) )  =  𝑏  ↔  ( ⌊ ‘ ( ( 𝐴  ·  ( 𝑅 ↑ 𝑘 ) )  mod  𝑅 ) )  =  𝑏 ) ) | 
						
							| 24 | 23 | rabbidv | ⊢ ( 𝑥  =  𝐴  →  { 𝑘  ∈  ( 1 ... 𝑛 )  ∣  ( ⌊ ‘ ( ( 𝑥  ·  ( 𝑅 ↑ 𝑘 ) )  mod  𝑅 ) )  =  𝑏 }  =  { 𝑘  ∈  ( 1 ... 𝑛 )  ∣  ( ⌊ ‘ ( ( 𝐴  ·  ( 𝑅 ↑ 𝑘 ) )  mod  𝑅 ) )  =  𝑏 } ) | 
						
							| 25 | 24 | fveq2d | ⊢ ( 𝑥  =  𝐴  →  ( ♯ ‘ { 𝑘  ∈  ( 1 ... 𝑛 )  ∣  ( ⌊ ‘ ( ( 𝑥  ·  ( 𝑅 ↑ 𝑘 ) )  mod  𝑅 ) )  =  𝑏 } )  =  ( ♯ ‘ { 𝑘  ∈  ( 1 ... 𝑛 )  ∣  ( ⌊ ‘ ( ( 𝐴  ·  ( 𝑅 ↑ 𝑘 ) )  mod  𝑅 ) )  =  𝑏 } ) ) | 
						
							| 26 | 25 | oveq1d | ⊢ ( 𝑥  =  𝐴  →  ( ( ♯ ‘ { 𝑘  ∈  ( 1 ... 𝑛 )  ∣  ( ⌊ ‘ ( ( 𝑥  ·  ( 𝑅 ↑ 𝑘 ) )  mod  𝑅 ) )  =  𝑏 } )  /  𝑛 )  =  ( ( ♯ ‘ { 𝑘  ∈  ( 1 ... 𝑛 )  ∣  ( ⌊ ‘ ( ( 𝐴  ·  ( 𝑅 ↑ 𝑘 ) )  mod  𝑅 ) )  =  𝑏 } )  /  𝑛 ) ) | 
						
							| 27 | 26 | mpteq2dv | ⊢ ( 𝑥  =  𝐴  →  ( 𝑛  ∈  ℕ  ↦  ( ( ♯ ‘ { 𝑘  ∈  ( 1 ... 𝑛 )  ∣  ( ⌊ ‘ ( ( 𝑥  ·  ( 𝑅 ↑ 𝑘 ) )  mod  𝑅 ) )  =  𝑏 } )  /  𝑛 ) )  =  ( 𝑛  ∈  ℕ  ↦  ( ( ♯ ‘ { 𝑘  ∈  ( 1 ... 𝑛 )  ∣  ( ⌊ ‘ ( ( 𝐴  ·  ( 𝑅 ↑ 𝑘 ) )  mod  𝑅 ) )  =  𝑏 } )  /  𝑛 ) ) ) | 
						
							| 28 | 27 | breq1d | ⊢ ( 𝑥  =  𝐴  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( ♯ ‘ { 𝑘  ∈  ( 1 ... 𝑛 )  ∣  ( ⌊ ‘ ( ( 𝑥  ·  ( 𝑅 ↑ 𝑘 ) )  mod  𝑅 ) )  =  𝑏 } )  /  𝑛 ) )  ⇝  ( 1  /  𝑅 )  ↔  ( 𝑛  ∈  ℕ  ↦  ( ( ♯ ‘ { 𝑘  ∈  ( 1 ... 𝑛 )  ∣  ( ⌊ ‘ ( ( 𝐴  ·  ( 𝑅 ↑ 𝑘 ) )  mod  𝑅 ) )  =  𝑏 } )  /  𝑛 ) )  ⇝  ( 1  /  𝑅 ) ) ) | 
						
							| 29 | 28 | ralbidv | ⊢ ( 𝑥  =  𝐴  →  ( ∀ 𝑏  ∈  ( 0 ... ( 𝑅  −  1 ) ) ( 𝑛  ∈  ℕ  ↦  ( ( ♯ ‘ { 𝑘  ∈  ( 1 ... 𝑛 )  ∣  ( ⌊ ‘ ( ( 𝑥  ·  ( 𝑅 ↑ 𝑘 ) )  mod  𝑅 ) )  =  𝑏 } )  /  𝑛 ) )  ⇝  ( 1  /  𝑅 )  ↔  ∀ 𝑏  ∈  ( 0 ... ( 𝑅  −  1 ) ) ( 𝑛  ∈  ℕ  ↦  ( ( ♯ ‘ { 𝑘  ∈  ( 1 ... 𝑛 )  ∣  ( ⌊ ‘ ( ( 𝐴  ·  ( 𝑅 ↑ 𝑘 ) )  mod  𝑅 ) )  =  𝑏 } )  /  𝑛 ) )  ⇝  ( 1  /  𝑅 ) ) ) | 
						
							| 30 | 29 | elrab | ⊢ ( 𝐴  ∈  { 𝑥  ∈  ℝ  ∣  ∀ 𝑏  ∈  ( 0 ... ( 𝑅  −  1 ) ) ( 𝑛  ∈  ℕ  ↦  ( ( ♯ ‘ { 𝑘  ∈  ( 1 ... 𝑛 )  ∣  ( ⌊ ‘ ( ( 𝑥  ·  ( 𝑅 ↑ 𝑘 ) )  mod  𝑅 ) )  =  𝑏 } )  /  𝑛 ) )  ⇝  ( 1  /  𝑅 ) }  ↔  ( 𝐴  ∈  ℝ  ∧  ∀ 𝑏  ∈  ( 0 ... ( 𝑅  −  1 ) ) ( 𝑛  ∈  ℕ  ↦  ( ( ♯ ‘ { 𝑘  ∈  ( 1 ... 𝑛 )  ∣  ( ⌊ ‘ ( ( 𝐴  ·  ( 𝑅 ↑ 𝑘 ) )  mod  𝑅 ) )  =  𝑏 } )  /  𝑛 ) )  ⇝  ( 1  /  𝑅 ) ) ) | 
						
							| 31 | 20 30 | bitrdi | ⊢ ( 𝑅  ∈  ( ℤ≥ ‘ 2 )  →  ( 𝐴  ∈  ( 𝑆 ‘ 𝑅 )  ↔  ( 𝐴  ∈  ℝ  ∧  ∀ 𝑏  ∈  ( 0 ... ( 𝑅  −  1 ) ) ( 𝑛  ∈  ℕ  ↦  ( ( ♯ ‘ { 𝑘  ∈  ( 1 ... 𝑛 )  ∣  ( ⌊ ‘ ( ( 𝐴  ·  ( 𝑅 ↑ 𝑘 ) )  mod  𝑅 ) )  =  𝑏 } )  /  𝑛 ) )  ⇝  ( 1  /  𝑅 ) ) ) ) | 
						
							| 32 | 31 | pm5.32i | ⊢ ( ( 𝑅  ∈  ( ℤ≥ ‘ 2 )  ∧  𝐴  ∈  ( 𝑆 ‘ 𝑅 ) )  ↔  ( 𝑅  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝐴  ∈  ℝ  ∧  ∀ 𝑏  ∈  ( 0 ... ( 𝑅  −  1 ) ) ( 𝑛  ∈  ℕ  ↦  ( ( ♯ ‘ { 𝑘  ∈  ( 1 ... 𝑛 )  ∣  ( ⌊ ‘ ( ( 𝐴  ·  ( 𝑅 ↑ 𝑘 ) )  mod  𝑅 ) )  =  𝑏 } )  /  𝑛 ) )  ⇝  ( 1  /  𝑅 ) ) ) ) | 
						
							| 33 | 1 | dmmptss | ⊢ dom  𝑆  ⊆  ( ℤ≥ ‘ 2 ) | 
						
							| 34 |  | elfvdm | ⊢ ( 𝐴  ∈  ( 𝑆 ‘ 𝑅 )  →  𝑅  ∈  dom  𝑆 ) | 
						
							| 35 | 33 34 | sselid | ⊢ ( 𝐴  ∈  ( 𝑆 ‘ 𝑅 )  →  𝑅  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 36 | 35 | pm4.71ri | ⊢ ( 𝐴  ∈  ( 𝑆 ‘ 𝑅 )  ↔  ( 𝑅  ∈  ( ℤ≥ ‘ 2 )  ∧  𝐴  ∈  ( 𝑆 ‘ 𝑅 ) ) ) | 
						
							| 37 |  | 3anass | ⊢ ( ( 𝑅  ∈  ( ℤ≥ ‘ 2 )  ∧  𝐴  ∈  ℝ  ∧  ∀ 𝑏  ∈  ( 0 ... ( 𝑅  −  1 ) ) ( 𝑛  ∈  ℕ  ↦  ( ( ♯ ‘ { 𝑘  ∈  ( 1 ... 𝑛 )  ∣  ( ⌊ ‘ ( ( 𝐴  ·  ( 𝑅 ↑ 𝑘 ) )  mod  𝑅 ) )  =  𝑏 } )  /  𝑛 ) )  ⇝  ( 1  /  𝑅 ) )  ↔  ( 𝑅  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝐴  ∈  ℝ  ∧  ∀ 𝑏  ∈  ( 0 ... ( 𝑅  −  1 ) ) ( 𝑛  ∈  ℕ  ↦  ( ( ♯ ‘ { 𝑘  ∈  ( 1 ... 𝑛 )  ∣  ( ⌊ ‘ ( ( 𝐴  ·  ( 𝑅 ↑ 𝑘 ) )  mod  𝑅 ) )  =  𝑏 } )  /  𝑛 ) )  ⇝  ( 1  /  𝑅 ) ) ) ) | 
						
							| 38 | 32 36 37 | 3bitr4i | ⊢ ( 𝐴  ∈  ( 𝑆 ‘ 𝑅 )  ↔  ( 𝑅  ∈  ( ℤ≥ ‘ 2 )  ∧  𝐴  ∈  ℝ  ∧  ∀ 𝑏  ∈  ( 0 ... ( 𝑅  −  1 ) ) ( 𝑛  ∈  ℕ  ↦  ( ( ♯ ‘ { 𝑘  ∈  ( 1 ... 𝑛 )  ∣  ( ⌊ ‘ ( ( 𝐴  ·  ( 𝑅 ↑ 𝑘 ) )  mod  𝑅 ) )  =  𝑏 } )  /  𝑛 ) )  ⇝  ( 1  /  𝑅 ) ) ) |