Metamath Proof Explorer
		
		
		
		Description:  A strict order relation has no 3-cycle loops.  (Contributed by NM, 21-Jan-1996)
		
			
				
					 | 
					 | 
					Ref | 
					Expression | 
				
				
					 | 
					Assertion | 
					so3nr | 
					⊢  ( ( 𝑅  Or  𝐴  ∧  ( 𝐵  ∈  𝐴  ∧  𝐶  ∈  𝐴  ∧  𝐷  ∈  𝐴 ) )  →  ¬  ( 𝐵 𝑅 𝐶  ∧  𝐶 𝑅 𝐷  ∧  𝐷 𝑅 𝐵 ) )  | 
				
			
		
		
			
				Proof
				
					
						| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							sopo | 
							⊢ ( 𝑅  Or  𝐴  →  𝑅  Po  𝐴 )  | 
						
						
							| 2 | 
							
								
							 | 
							po3nr | 
							⊢ ( ( 𝑅  Po  𝐴  ∧  ( 𝐵  ∈  𝐴  ∧  𝐶  ∈  𝐴  ∧  𝐷  ∈  𝐴 ) )  →  ¬  ( 𝐵 𝑅 𝐶  ∧  𝐶 𝑅 𝐷  ∧  𝐷 𝑅 𝐵 ) )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							sylan | 
							⊢ ( ( 𝑅  Or  𝐴  ∧  ( 𝐵  ∈  𝐴  ∧  𝐶  ∈  𝐴  ∧  𝐷  ∈  𝐴 ) )  →  ¬  ( 𝐵 𝑅 𝐶  ∧  𝐶 𝑅 𝐷  ∧  𝐷 𝑅 𝐵 ) )  |