Description: The subspace sum of a closed subspace and a one-dimensional subspace is closed. (Contributed by NM, 17-Dec-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | spansnscl | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 +ℋ ( span ‘ { 𝐵 } ) ) ∈ Cℋ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spansnj | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 +ℋ ( span ‘ { 𝐵 } ) ) = ( 𝐴 ∨ℋ ( span ‘ { 𝐵 } ) ) ) | |
| 2 | spansnch | ⊢ ( 𝐵 ∈ ℋ → ( span ‘ { 𝐵 } ) ∈ Cℋ ) | |
| 3 | chjcl | ⊢ ( ( 𝐴 ∈ Cℋ ∧ ( span ‘ { 𝐵 } ) ∈ Cℋ ) → ( 𝐴 ∨ℋ ( span ‘ { 𝐵 } ) ) ∈ Cℋ ) | |
| 4 | 2 3 | sylan2 | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 ∨ℋ ( span ‘ { 𝐵 } ) ) ∈ Cℋ ) |
| 5 | 1 4 | eqeltrd | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 +ℋ ( span ‘ { 𝐵 } ) ) ∈ Cℋ ) |