| Step | Hyp | Ref | Expression | 
						
							| 1 |  | spansnsh | ⊢ ( 𝐴  ∈   ℋ  →  ( span ‘ { 𝐴 } )  ∈   Sℋ  ) | 
						
							| 2 | 1 | adantr | ⊢ ( ( 𝐴  ∈   ℋ  ∧  ( 𝐴  +ℎ  𝐵 )  ∈  ( span ‘ { 𝐴 } ) )  →  ( span ‘ { 𝐴 } )  ∈   Sℋ  ) | 
						
							| 3 |  | simpr | ⊢ ( ( 𝐴  ∈   ℋ  ∧  ( 𝐴  +ℎ  𝐵 )  ∈  ( span ‘ { 𝐴 } ) )  →  ( 𝐴  +ℎ  𝐵 )  ∈  ( span ‘ { 𝐴 } ) ) | 
						
							| 4 |  | spansnid | ⊢ ( 𝐴  ∈   ℋ  →  𝐴  ∈  ( span ‘ { 𝐴 } ) ) | 
						
							| 5 | 4 | adantr | ⊢ ( ( 𝐴  ∈   ℋ  ∧  ( 𝐴  +ℎ  𝐵 )  ∈  ( span ‘ { 𝐴 } ) )  →  𝐴  ∈  ( span ‘ { 𝐴 } ) ) | 
						
							| 6 |  | shsubcl | ⊢ ( ( ( span ‘ { 𝐴 } )  ∈   Sℋ   ∧  ( 𝐴  +ℎ  𝐵 )  ∈  ( span ‘ { 𝐴 } )  ∧  𝐴  ∈  ( span ‘ { 𝐴 } ) )  →  ( ( 𝐴  +ℎ  𝐵 )  −ℎ  𝐴 )  ∈  ( span ‘ { 𝐴 } ) ) | 
						
							| 7 | 2 3 5 6 | syl3anc | ⊢ ( ( 𝐴  ∈   ℋ  ∧  ( 𝐴  +ℎ  𝐵 )  ∈  ( span ‘ { 𝐴 } ) )  →  ( ( 𝐴  +ℎ  𝐵 )  −ℎ  𝐴 )  ∈  ( span ‘ { 𝐴 } ) ) | 
						
							| 8 | 7 | ex | ⊢ ( 𝐴  ∈   ℋ  →  ( ( 𝐴  +ℎ  𝐵 )  ∈  ( span ‘ { 𝐴 } )  →  ( ( 𝐴  +ℎ  𝐵 )  −ℎ  𝐴 )  ∈  ( span ‘ { 𝐴 } ) ) ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐵  ∈   ℋ )  →  ( ( 𝐴  +ℎ  𝐵 )  ∈  ( span ‘ { 𝐴 } )  →  ( ( 𝐴  +ℎ  𝐵 )  −ℎ  𝐴 )  ∈  ( span ‘ { 𝐴 } ) ) ) | 
						
							| 10 |  | hvpncan2 | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐵  ∈   ℋ )  →  ( ( 𝐴  +ℎ  𝐵 )  −ℎ  𝐴 )  =  𝐵 ) | 
						
							| 11 | 10 | eleq1d | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐵  ∈   ℋ )  →  ( ( ( 𝐴  +ℎ  𝐵 )  −ℎ  𝐴 )  ∈  ( span ‘ { 𝐴 } )  ↔  𝐵  ∈  ( span ‘ { 𝐴 } ) ) ) | 
						
							| 12 | 9 11 | sylibd | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐵  ∈   ℋ )  →  ( ( 𝐴  +ℎ  𝐵 )  ∈  ( span ‘ { 𝐴 } )  →  𝐵  ∈  ( span ‘ { 𝐴 } ) ) ) | 
						
							| 13 |  | shaddcl | ⊢ ( ( ( span ‘ { 𝐴 } )  ∈   Sℋ   ∧  𝐴  ∈  ( span ‘ { 𝐴 } )  ∧  𝐵  ∈  ( span ‘ { 𝐴 } ) )  →  ( 𝐴  +ℎ  𝐵 )  ∈  ( span ‘ { 𝐴 } ) ) | 
						
							| 14 | 13 | 3expia | ⊢ ( ( ( span ‘ { 𝐴 } )  ∈   Sℋ   ∧  𝐴  ∈  ( span ‘ { 𝐴 } ) )  →  ( 𝐵  ∈  ( span ‘ { 𝐴 } )  →  ( 𝐴  +ℎ  𝐵 )  ∈  ( span ‘ { 𝐴 } ) ) ) | 
						
							| 15 | 1 4 14 | syl2anc | ⊢ ( 𝐴  ∈   ℋ  →  ( 𝐵  ∈  ( span ‘ { 𝐴 } )  →  ( 𝐴  +ℎ  𝐵 )  ∈  ( span ‘ { 𝐴 } ) ) ) | 
						
							| 16 | 15 | adantr | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐵  ∈   ℋ )  →  ( 𝐵  ∈  ( span ‘ { 𝐴 } )  →  ( 𝐴  +ℎ  𝐵 )  ∈  ( span ‘ { 𝐴 } ) ) ) | 
						
							| 17 | 12 16 | impbid | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐵  ∈   ℋ )  →  ( ( 𝐴  +ℎ  𝐵 )  ∈  ( span ‘ { 𝐴 } )  ↔  𝐵  ∈  ( span ‘ { 𝐴 } ) ) ) |