Metamath Proof Explorer


Theorem sumspansn

Description: The sum of two vectors belong to the span of one of them iff the other vector also belongs. (Contributed by NM, 1-Nov-2005) (New usage is discouraged.)

Ref Expression
Assertion sumspansn ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 + 𝐵 ) ∈ ( span ‘ { 𝐴 } ) ↔ 𝐵 ∈ ( span ‘ { 𝐴 } ) ) )

Proof

Step Hyp Ref Expression
1 spansnsh ( 𝐴 ∈ ℋ → ( span ‘ { 𝐴 } ) ∈ S )
2 1 adantr ( ( 𝐴 ∈ ℋ ∧ ( 𝐴 + 𝐵 ) ∈ ( span ‘ { 𝐴 } ) ) → ( span ‘ { 𝐴 } ) ∈ S )
3 simpr ( ( 𝐴 ∈ ℋ ∧ ( 𝐴 + 𝐵 ) ∈ ( span ‘ { 𝐴 } ) ) → ( 𝐴 + 𝐵 ) ∈ ( span ‘ { 𝐴 } ) )
4 spansnid ( 𝐴 ∈ ℋ → 𝐴 ∈ ( span ‘ { 𝐴 } ) )
5 4 adantr ( ( 𝐴 ∈ ℋ ∧ ( 𝐴 + 𝐵 ) ∈ ( span ‘ { 𝐴 } ) ) → 𝐴 ∈ ( span ‘ { 𝐴 } ) )
6 shsubcl ( ( ( span ‘ { 𝐴 } ) ∈ S ∧ ( 𝐴 + 𝐵 ) ∈ ( span ‘ { 𝐴 } ) ∧ 𝐴 ∈ ( span ‘ { 𝐴 } ) ) → ( ( 𝐴 + 𝐵 ) − 𝐴 ) ∈ ( span ‘ { 𝐴 } ) )
7 2 3 5 6 syl3anc ( ( 𝐴 ∈ ℋ ∧ ( 𝐴 + 𝐵 ) ∈ ( span ‘ { 𝐴 } ) ) → ( ( 𝐴 + 𝐵 ) − 𝐴 ) ∈ ( span ‘ { 𝐴 } ) )
8 7 ex ( 𝐴 ∈ ℋ → ( ( 𝐴 + 𝐵 ) ∈ ( span ‘ { 𝐴 } ) → ( ( 𝐴 + 𝐵 ) − 𝐴 ) ∈ ( span ‘ { 𝐴 } ) ) )
9 8 adantr ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 + 𝐵 ) ∈ ( span ‘ { 𝐴 } ) → ( ( 𝐴 + 𝐵 ) − 𝐴 ) ∈ ( span ‘ { 𝐴 } ) ) )
10 hvpncan2 ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 + 𝐵 ) − 𝐴 ) = 𝐵 )
11 10 eleq1d ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( ( 𝐴 + 𝐵 ) − 𝐴 ) ∈ ( span ‘ { 𝐴 } ) ↔ 𝐵 ∈ ( span ‘ { 𝐴 } ) ) )
12 9 11 sylibd ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 + 𝐵 ) ∈ ( span ‘ { 𝐴 } ) → 𝐵 ∈ ( span ‘ { 𝐴 } ) ) )
13 shaddcl ( ( ( span ‘ { 𝐴 } ) ∈ S𝐴 ∈ ( span ‘ { 𝐴 } ) ∧ 𝐵 ∈ ( span ‘ { 𝐴 } ) ) → ( 𝐴 + 𝐵 ) ∈ ( span ‘ { 𝐴 } ) )
14 13 3expia ( ( ( span ‘ { 𝐴 } ) ∈ S𝐴 ∈ ( span ‘ { 𝐴 } ) ) → ( 𝐵 ∈ ( span ‘ { 𝐴 } ) → ( 𝐴 + 𝐵 ) ∈ ( span ‘ { 𝐴 } ) ) )
15 1 4 14 syl2anc ( 𝐴 ∈ ℋ → ( 𝐵 ∈ ( span ‘ { 𝐴 } ) → ( 𝐴 + 𝐵 ) ∈ ( span ‘ { 𝐴 } ) ) )
16 15 adantr ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐵 ∈ ( span ‘ { 𝐴 } ) → ( 𝐴 + 𝐵 ) ∈ ( span ‘ { 𝐴 } ) ) )
17 12 16 impbid ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 + 𝐵 ) ∈ ( span ‘ { 𝐴 } ) ↔ 𝐵 ∈ ( span ‘ { 𝐴 } ) ) )