| Step | Hyp | Ref | Expression | 
						
							| 1 |  | spansnm0.1 | ⊢ 𝐴  ∈   ℋ | 
						
							| 2 |  | spansnm0.2 | ⊢ 𝐵  ∈   ℋ | 
						
							| 3 | 2 | spansnchi | ⊢ ( span ‘ { 𝐵 } )  ∈   Cℋ | 
						
							| 4 | 3 | chshii | ⊢ ( span ‘ { 𝐵 } )  ∈   Sℋ | 
						
							| 5 |  | elspansn5 | ⊢ ( ( span ‘ { 𝐵 } )  ∈   Sℋ   →  ( ( ( 𝐴  ∈   ℋ  ∧  ¬  𝐴  ∈  ( span ‘ { 𝐵 } ) )  ∧  ( 𝑥  ∈  ( span ‘ { 𝐴 } )  ∧  𝑥  ∈  ( span ‘ { 𝐵 } ) ) )  →  𝑥  =  0ℎ ) ) | 
						
							| 6 | 4 5 | ax-mp | ⊢ ( ( ( 𝐴  ∈   ℋ  ∧  ¬  𝐴  ∈  ( span ‘ { 𝐵 } ) )  ∧  ( 𝑥  ∈  ( span ‘ { 𝐴 } )  ∧  𝑥  ∈  ( span ‘ { 𝐵 } ) ) )  →  𝑥  =  0ℎ ) | 
						
							| 7 | 1 6 | mpanl1 | ⊢ ( ( ¬  𝐴  ∈  ( span ‘ { 𝐵 } )  ∧  ( 𝑥  ∈  ( span ‘ { 𝐴 } )  ∧  𝑥  ∈  ( span ‘ { 𝐵 } ) ) )  →  𝑥  =  0ℎ ) | 
						
							| 8 | 7 | ex | ⊢ ( ¬  𝐴  ∈  ( span ‘ { 𝐵 } )  →  ( ( 𝑥  ∈  ( span ‘ { 𝐴 } )  ∧  𝑥  ∈  ( span ‘ { 𝐵 } ) )  →  𝑥  =  0ℎ ) ) | 
						
							| 9 |  | elin | ⊢ ( 𝑥  ∈  ( ( span ‘ { 𝐴 } )  ∩  ( span ‘ { 𝐵 } ) )  ↔  ( 𝑥  ∈  ( span ‘ { 𝐴 } )  ∧  𝑥  ∈  ( span ‘ { 𝐵 } ) ) ) | 
						
							| 10 |  | elch0 | ⊢ ( 𝑥  ∈  0ℋ  ↔  𝑥  =  0ℎ ) | 
						
							| 11 | 8 9 10 | 3imtr4g | ⊢ ( ¬  𝐴  ∈  ( span ‘ { 𝐵 } )  →  ( 𝑥  ∈  ( ( span ‘ { 𝐴 } )  ∩  ( span ‘ { 𝐵 } ) )  →  𝑥  ∈  0ℋ ) ) | 
						
							| 12 | 11 | ssrdv | ⊢ ( ¬  𝐴  ∈  ( span ‘ { 𝐵 } )  →  ( ( span ‘ { 𝐴 } )  ∩  ( span ‘ { 𝐵 } ) )  ⊆  0ℋ ) | 
						
							| 13 | 1 | spansnchi | ⊢ ( span ‘ { 𝐴 } )  ∈   Cℋ | 
						
							| 14 | 13 3 | chincli | ⊢ ( ( span ‘ { 𝐴 } )  ∩  ( span ‘ { 𝐵 } ) )  ∈   Cℋ | 
						
							| 15 | 14 | chle0i | ⊢ ( ( ( span ‘ { 𝐴 } )  ∩  ( span ‘ { 𝐵 } ) )  ⊆  0ℋ  ↔  ( ( span ‘ { 𝐴 } )  ∩  ( span ‘ { 𝐵 } ) )  =  0ℋ ) | 
						
							| 16 | 12 15 | sylib | ⊢ ( ¬  𝐴  ∈  ( span ‘ { 𝐵 } )  →  ( ( span ‘ { 𝐴 } )  ∩  ( span ‘ { 𝐵 } ) )  =  0ℋ ) |