| Step | Hyp | Ref | Expression | 
						
							| 1 |  | spansnm0.1 |  |-  A e. ~H | 
						
							| 2 |  | spansnm0.2 |  |-  B e. ~H | 
						
							| 3 | 2 | spansnchi |  |-  ( span ` { B } ) e. CH | 
						
							| 4 | 3 | chshii |  |-  ( span ` { B } ) e. SH | 
						
							| 5 |  | elspansn5 |  |-  ( ( span ` { B } ) e. SH -> ( ( ( A e. ~H /\ -. A e. ( span ` { B } ) ) /\ ( x e. ( span ` { A } ) /\ x e. ( span ` { B } ) ) ) -> x = 0h ) ) | 
						
							| 6 | 4 5 | ax-mp |  |-  ( ( ( A e. ~H /\ -. A e. ( span ` { B } ) ) /\ ( x e. ( span ` { A } ) /\ x e. ( span ` { B } ) ) ) -> x = 0h ) | 
						
							| 7 | 1 6 | mpanl1 |  |-  ( ( -. A e. ( span ` { B } ) /\ ( x e. ( span ` { A } ) /\ x e. ( span ` { B } ) ) ) -> x = 0h ) | 
						
							| 8 | 7 | ex |  |-  ( -. A e. ( span ` { B } ) -> ( ( x e. ( span ` { A } ) /\ x e. ( span ` { B } ) ) -> x = 0h ) ) | 
						
							| 9 |  | elin |  |-  ( x e. ( ( span ` { A } ) i^i ( span ` { B } ) ) <-> ( x e. ( span ` { A } ) /\ x e. ( span ` { B } ) ) ) | 
						
							| 10 |  | elch0 |  |-  ( x e. 0H <-> x = 0h ) | 
						
							| 11 | 8 9 10 | 3imtr4g |  |-  ( -. A e. ( span ` { B } ) -> ( x e. ( ( span ` { A } ) i^i ( span ` { B } ) ) -> x e. 0H ) ) | 
						
							| 12 | 11 | ssrdv |  |-  ( -. A e. ( span ` { B } ) -> ( ( span ` { A } ) i^i ( span ` { B } ) ) C_ 0H ) | 
						
							| 13 | 1 | spansnchi |  |-  ( span ` { A } ) e. CH | 
						
							| 14 | 13 3 | chincli |  |-  ( ( span ` { A } ) i^i ( span ` { B } ) ) e. CH | 
						
							| 15 | 14 | chle0i |  |-  ( ( ( span ` { A } ) i^i ( span ` { B } ) ) C_ 0H <-> ( ( span ` { A } ) i^i ( span ` { B } ) ) = 0H ) | 
						
							| 16 | 12 15 | sylib |  |-  ( -. A e. ( span ` { B } ) -> ( ( span ` { A } ) i^i ( span ` { B } ) ) = 0H ) |