Metamath Proof Explorer


Theorem sqdivzi

Description: Distribution of square over division. (Contributed by Scott Fenton, 7-Jun-2013)

Ref Expression
Hypotheses sqdivzi.1 𝐴 ∈ ℂ
sqdivzi.2 𝐵 ∈ ℂ
Assertion sqdivzi ( 𝐵 ≠ 0 → ( ( 𝐴 / 𝐵 ) ↑ 2 ) = ( ( 𝐴 ↑ 2 ) / ( 𝐵 ↑ 2 ) ) )

Proof

Step Hyp Ref Expression
1 sqdivzi.1 𝐴 ∈ ℂ
2 sqdivzi.2 𝐵 ∈ ℂ
3 oveq2 ( 𝐵 = if ( 𝐵 ≠ 0 , 𝐵 , 1 ) → ( 𝐴 / 𝐵 ) = ( 𝐴 / if ( 𝐵 ≠ 0 , 𝐵 , 1 ) ) )
4 3 oveq1d ( 𝐵 = if ( 𝐵 ≠ 0 , 𝐵 , 1 ) → ( ( 𝐴 / 𝐵 ) ↑ 2 ) = ( ( 𝐴 / if ( 𝐵 ≠ 0 , 𝐵 , 1 ) ) ↑ 2 ) )
5 oveq1 ( 𝐵 = if ( 𝐵 ≠ 0 , 𝐵 , 1 ) → ( 𝐵 ↑ 2 ) = ( if ( 𝐵 ≠ 0 , 𝐵 , 1 ) ↑ 2 ) )
6 5 oveq2d ( 𝐵 = if ( 𝐵 ≠ 0 , 𝐵 , 1 ) → ( ( 𝐴 ↑ 2 ) / ( 𝐵 ↑ 2 ) ) = ( ( 𝐴 ↑ 2 ) / ( if ( 𝐵 ≠ 0 , 𝐵 , 1 ) ↑ 2 ) ) )
7 4 6 eqeq12d ( 𝐵 = if ( 𝐵 ≠ 0 , 𝐵 , 1 ) → ( ( ( 𝐴 / 𝐵 ) ↑ 2 ) = ( ( 𝐴 ↑ 2 ) / ( 𝐵 ↑ 2 ) ) ↔ ( ( 𝐴 / if ( 𝐵 ≠ 0 , 𝐵 , 1 ) ) ↑ 2 ) = ( ( 𝐴 ↑ 2 ) / ( if ( 𝐵 ≠ 0 , 𝐵 , 1 ) ↑ 2 ) ) ) )
8 ax-1cn 1 ∈ ℂ
9 2 8 ifcli if ( 𝐵 ≠ 0 , 𝐵 , 1 ) ∈ ℂ
10 elimne0 if ( 𝐵 ≠ 0 , 𝐵 , 1 ) ≠ 0
11 1 9 10 sqdivi ( ( 𝐴 / if ( 𝐵 ≠ 0 , 𝐵 , 1 ) ) ↑ 2 ) = ( ( 𝐴 ↑ 2 ) / ( if ( 𝐵 ≠ 0 , 𝐵 , 1 ) ↑ 2 ) )
12 7 11 dedth ( 𝐵 ≠ 0 → ( ( 𝐴 / 𝐵 ) ↑ 2 ) = ( ( 𝐴 ↑ 2 ) / ( 𝐵 ↑ 2 ) ) )