Step |
Hyp |
Ref |
Expression |
1 |
|
sqdivzi.1 |
|- A e. CC |
2 |
|
sqdivzi.2 |
|- B e. CC |
3 |
|
oveq2 |
|- ( B = if ( B =/= 0 , B , 1 ) -> ( A / B ) = ( A / if ( B =/= 0 , B , 1 ) ) ) |
4 |
3
|
oveq1d |
|- ( B = if ( B =/= 0 , B , 1 ) -> ( ( A / B ) ^ 2 ) = ( ( A / if ( B =/= 0 , B , 1 ) ) ^ 2 ) ) |
5 |
|
oveq1 |
|- ( B = if ( B =/= 0 , B , 1 ) -> ( B ^ 2 ) = ( if ( B =/= 0 , B , 1 ) ^ 2 ) ) |
6 |
5
|
oveq2d |
|- ( B = if ( B =/= 0 , B , 1 ) -> ( ( A ^ 2 ) / ( B ^ 2 ) ) = ( ( A ^ 2 ) / ( if ( B =/= 0 , B , 1 ) ^ 2 ) ) ) |
7 |
4 6
|
eqeq12d |
|- ( B = if ( B =/= 0 , B , 1 ) -> ( ( ( A / B ) ^ 2 ) = ( ( A ^ 2 ) / ( B ^ 2 ) ) <-> ( ( A / if ( B =/= 0 , B , 1 ) ) ^ 2 ) = ( ( A ^ 2 ) / ( if ( B =/= 0 , B , 1 ) ^ 2 ) ) ) ) |
8 |
|
ax-1cn |
|- 1 e. CC |
9 |
2 8
|
ifcli |
|- if ( B =/= 0 , B , 1 ) e. CC |
10 |
|
elimne0 |
|- if ( B =/= 0 , B , 1 ) =/= 0 |
11 |
1 9 10
|
sqdivi |
|- ( ( A / if ( B =/= 0 , B , 1 ) ) ^ 2 ) = ( ( A ^ 2 ) / ( if ( B =/= 0 , B , 1 ) ^ 2 ) ) |
12 |
7 11
|
dedth |
|- ( B =/= 0 -> ( ( A / B ) ^ 2 ) = ( ( A ^ 2 ) / ( B ^ 2 ) ) ) |