Metamath Proof Explorer


Theorem sqdivzi

Description: Distribution of square over division. (Contributed by Scott Fenton, 7-Jun-2013)

Ref Expression
Hypotheses sqdivzi.1 A
sqdivzi.2 B
Assertion sqdivzi B 0 A B 2 = A 2 B 2

Proof

Step Hyp Ref Expression
1 sqdivzi.1 A
2 sqdivzi.2 B
3 oveq2 B = if B 0 B 1 A B = A if B 0 B 1
4 3 oveq1d B = if B 0 B 1 A B 2 = A if B 0 B 1 2
5 oveq1 B = if B 0 B 1 B 2 = if B 0 B 1 2
6 5 oveq2d B = if B 0 B 1 A 2 B 2 = A 2 if B 0 B 1 2
7 4 6 eqeq12d B = if B 0 B 1 A B 2 = A 2 B 2 A if B 0 B 1 2 = A 2 if B 0 B 1 2
8 ax-1cn 1
9 2 8 ifcli if B 0 B 1
10 elimne0 if B 0 B 1 0
11 1 9 10 sqdivi A if B 0 B 1 2 = A 2 if B 0 B 1 2
12 7 11 dedth B 0 A B 2 = A 2 B 2