Metamath Proof Explorer


Theorem supfz

Description: The supremum of a finite sequence of integers. (Contributed by Scott Fenton, 8-Aug-2013)

Ref Expression
Assertion supfz NMsupMN<=N

Proof

Step Hyp Ref Expression
1 zssre
2 ltso <Or
3 soss <Or<Or
4 1 2 3 mp2 <Or
5 4 a1i NM<Or
6 eluzelz NMN
7 eluzfz2 NMNMN
8 elfzle2 xMNxN
9 8 adantl NMxMNxN
10 elfzelz xMNx
11 10 zred xMNx
12 eluzelre NMN
13 lenlt xNxN¬N<x
14 11 12 13 syl2anr NMxMNxN¬N<x
15 9 14 mpbid NMxMN¬N<x
16 5 6 7 15 supmax NMsupMN<=N