Metamath Proof Explorer


Theorem inffz

Description: The infimum of a finite sequence of integers. (Contributed by Scott Fenton, 8-Aug-2013) (Revised by AV, 10-Oct-2021)

Ref Expression
Assertion inffz N M sup M N < = M

Proof

Step Hyp Ref Expression
1 zssre
2 ltso < Or
3 soss < Or < Or
4 1 2 3 mp2 < Or
5 4 a1i N M < Or
6 eluzel2 N M M
7 eluzfz1 N M M M N
8 elfzle1 x M N M x
9 8 adantl N M x M N M x
10 6 zred N M M
11 elfzelz x M N x
12 11 zred x M N x
13 lenlt M x M x ¬ x < M
14 10 12 13 syl2an N M x M N M x ¬ x < M
15 9 14 mpbid N M x M N ¬ x < M
16 5 6 7 15 infmin N M sup M N < = M