Metamath Proof Explorer


Theorem inffz

Description: The infimum of a finite sequence of integers. (Contributed by Scott Fenton, 8-Aug-2013) (Revised by AV, 10-Oct-2021)

Ref Expression
Assertion inffz NMsupMN<=M

Proof

Step Hyp Ref Expression
1 zssre
2 ltso <Or
3 soss <Or<Or
4 1 2 3 mp2 <Or
5 4 a1i NM<Or
6 eluzel2 NMM
7 eluzfz1 NMMMN
8 elfzle1 xMNMx
9 8 adantl NMxMNMx
10 6 zred NMM
11 elfzelz xMNx
12 11 zred xMNx
13 lenlt MxMx¬x<M
14 10 12 13 syl2an NMxMNMx¬x<M
15 9 14 mpbid NMxMN¬x<M
16 5 6 7 15 infmin NMsupMN<=M