Metamath Proof Explorer


Theorem inffz

Description: The infimum of a finite sequence of integers. (Contributed by Scott Fenton, 8-Aug-2013) (Revised by AV, 10-Oct-2021)

Ref Expression
Assertion inffz ( 𝑁 ∈ ( ℤ𝑀 ) → inf ( ( 𝑀 ... 𝑁 ) , ℤ , < ) = 𝑀 )

Proof

Step Hyp Ref Expression
1 zssre ℤ ⊆ ℝ
2 ltso < Or ℝ
3 soss ( ℤ ⊆ ℝ → ( < Or ℝ → < Or ℤ ) )
4 1 2 3 mp2 < Or ℤ
5 4 a1i ( 𝑁 ∈ ( ℤ𝑀 ) → < Or ℤ )
6 eluzel2 ( 𝑁 ∈ ( ℤ𝑀 ) → 𝑀 ∈ ℤ )
7 eluzfz1 ( 𝑁 ∈ ( ℤ𝑀 ) → 𝑀 ∈ ( 𝑀 ... 𝑁 ) )
8 elfzle1 ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → 𝑀𝑥 )
9 8 adantl ( ( 𝑁 ∈ ( ℤ𝑀 ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑀𝑥 )
10 6 zred ( 𝑁 ∈ ( ℤ𝑀 ) → 𝑀 ∈ ℝ )
11 elfzelz ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → 𝑥 ∈ ℤ )
12 11 zred ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → 𝑥 ∈ ℝ )
13 lenlt ( ( 𝑀 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( 𝑀𝑥 ↔ ¬ 𝑥 < 𝑀 ) )
14 10 12 13 syl2an ( ( 𝑁 ∈ ( ℤ𝑀 ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝑀𝑥 ↔ ¬ 𝑥 < 𝑀 ) )
15 9 14 mpbid ( ( 𝑁 ∈ ( ℤ𝑀 ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ¬ 𝑥 < 𝑀 )
16 5 6 7 15 infmin ( 𝑁 ∈ ( ℤ𝑀 ) → inf ( ( 𝑀 ... 𝑁 ) , ℤ , < ) = 𝑀 )