| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zssre |
⊢ ℤ ⊆ ℝ |
| 2 |
|
ltso |
⊢ < Or ℝ |
| 3 |
|
soss |
⊢ ( ℤ ⊆ ℝ → ( < Or ℝ → < Or ℤ ) ) |
| 4 |
1 2 3
|
mp2 |
⊢ < Or ℤ |
| 5 |
4
|
a1i |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → < Or ℤ ) |
| 6 |
|
eluzel2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℤ ) |
| 7 |
|
eluzfz1 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ( 𝑀 ... 𝑁 ) ) |
| 8 |
|
elfzle1 |
⊢ ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → 𝑀 ≤ 𝑥 ) |
| 9 |
8
|
adantl |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑀 ≤ 𝑥 ) |
| 10 |
6
|
zred |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℝ ) |
| 11 |
|
elfzelz |
⊢ ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → 𝑥 ∈ ℤ ) |
| 12 |
11
|
zred |
⊢ ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → 𝑥 ∈ ℝ ) |
| 13 |
|
lenlt |
⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( 𝑀 ≤ 𝑥 ↔ ¬ 𝑥 < 𝑀 ) ) |
| 14 |
10 12 13
|
syl2an |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝑀 ≤ 𝑥 ↔ ¬ 𝑥 < 𝑀 ) ) |
| 15 |
9 14
|
mpbid |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ¬ 𝑥 < 𝑀 ) |
| 16 |
5 6 7 15
|
infmin |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → inf ( ( 𝑀 ... 𝑁 ) , ℤ , < ) = 𝑀 ) |