Step |
Hyp |
Ref |
Expression |
1 |
|
0z |
⊢ 0 ∈ ℤ |
2 |
|
nn0z |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ ) |
3 |
|
peano2zm |
⊢ ( 𝑁 ∈ ℤ → ( 𝑁 − 1 ) ∈ ℤ ) |
4 |
2 3
|
syl |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 − 1 ) ∈ ℤ ) |
5 |
|
fzn |
⊢ ( ( 0 ∈ ℤ ∧ ( 𝑁 − 1 ) ∈ ℤ ) → ( ( 𝑁 − 1 ) < 0 ↔ ( 0 ... ( 𝑁 − 1 ) ) = ∅ ) ) |
6 |
1 4 5
|
sylancr |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝑁 − 1 ) < 0 ↔ ( 0 ... ( 𝑁 − 1 ) ) = ∅ ) ) |
7 |
|
elnn0 |
⊢ ( 𝑁 ∈ ℕ0 ↔ ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) |
8 |
|
nnge1 |
⊢ ( 𝑁 ∈ ℕ → 1 ≤ 𝑁 ) |
9 |
|
nnre |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ ) |
10 |
|
1re |
⊢ 1 ∈ ℝ |
11 |
|
subge0 |
⊢ ( ( 𝑁 ∈ ℝ ∧ 1 ∈ ℝ ) → ( 0 ≤ ( 𝑁 − 1 ) ↔ 1 ≤ 𝑁 ) ) |
12 |
|
0re |
⊢ 0 ∈ ℝ |
13 |
|
resubcl |
⊢ ( ( 𝑁 ∈ ℝ ∧ 1 ∈ ℝ ) → ( 𝑁 − 1 ) ∈ ℝ ) |
14 |
|
lenlt |
⊢ ( ( 0 ∈ ℝ ∧ ( 𝑁 − 1 ) ∈ ℝ ) → ( 0 ≤ ( 𝑁 − 1 ) ↔ ¬ ( 𝑁 − 1 ) < 0 ) ) |
15 |
12 13 14
|
sylancr |
⊢ ( ( 𝑁 ∈ ℝ ∧ 1 ∈ ℝ ) → ( 0 ≤ ( 𝑁 − 1 ) ↔ ¬ ( 𝑁 − 1 ) < 0 ) ) |
16 |
11 15
|
bitr3d |
⊢ ( ( 𝑁 ∈ ℝ ∧ 1 ∈ ℝ ) → ( 1 ≤ 𝑁 ↔ ¬ ( 𝑁 − 1 ) < 0 ) ) |
17 |
9 10 16
|
sylancl |
⊢ ( 𝑁 ∈ ℕ → ( 1 ≤ 𝑁 ↔ ¬ ( 𝑁 − 1 ) < 0 ) ) |
18 |
8 17
|
mpbid |
⊢ ( 𝑁 ∈ ℕ → ¬ ( 𝑁 − 1 ) < 0 ) |
19 |
|
nnne0 |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ≠ 0 ) |
20 |
19
|
neneqd |
⊢ ( 𝑁 ∈ ℕ → ¬ 𝑁 = 0 ) |
21 |
18 20
|
2falsed |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝑁 − 1 ) < 0 ↔ 𝑁 = 0 ) ) |
22 |
|
oveq1 |
⊢ ( 𝑁 = 0 → ( 𝑁 − 1 ) = ( 0 − 1 ) ) |
23 |
|
df-neg |
⊢ - 1 = ( 0 − 1 ) |
24 |
22 23
|
eqtr4di |
⊢ ( 𝑁 = 0 → ( 𝑁 − 1 ) = - 1 ) |
25 |
|
neg1lt0 |
⊢ - 1 < 0 |
26 |
24 25
|
eqbrtrdi |
⊢ ( 𝑁 = 0 → ( 𝑁 − 1 ) < 0 ) |
27 |
|
id |
⊢ ( 𝑁 = 0 → 𝑁 = 0 ) |
28 |
26 27
|
2thd |
⊢ ( 𝑁 = 0 → ( ( 𝑁 − 1 ) < 0 ↔ 𝑁 = 0 ) ) |
29 |
21 28
|
jaoi |
⊢ ( ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) → ( ( 𝑁 − 1 ) < 0 ↔ 𝑁 = 0 ) ) |
30 |
7 29
|
sylbi |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝑁 − 1 ) < 0 ↔ 𝑁 = 0 ) ) |
31 |
6 30
|
bitr3d |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 0 ... ( 𝑁 − 1 ) ) = ∅ ↔ 𝑁 = 0 ) ) |