| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0z | ⊢ 0  ∈  ℤ | 
						
							| 2 |  | nn0z | ⊢ ( 𝑁  ∈  ℕ0  →  𝑁  ∈  ℤ ) | 
						
							| 3 |  | peano2zm | ⊢ ( 𝑁  ∈  ℤ  →  ( 𝑁  −  1 )  ∈  ℤ ) | 
						
							| 4 | 2 3 | syl | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑁  −  1 )  ∈  ℤ ) | 
						
							| 5 |  | fzn | ⊢ ( ( 0  ∈  ℤ  ∧  ( 𝑁  −  1 )  ∈  ℤ )  →  ( ( 𝑁  −  1 )  <  0  ↔  ( 0 ... ( 𝑁  −  1 ) )  =  ∅ ) ) | 
						
							| 6 | 1 4 5 | sylancr | ⊢ ( 𝑁  ∈  ℕ0  →  ( ( 𝑁  −  1 )  <  0  ↔  ( 0 ... ( 𝑁  −  1 ) )  =  ∅ ) ) | 
						
							| 7 |  | elnn0 | ⊢ ( 𝑁  ∈  ℕ0  ↔  ( 𝑁  ∈  ℕ  ∨  𝑁  =  0 ) ) | 
						
							| 8 |  | nnge1 | ⊢ ( 𝑁  ∈  ℕ  →  1  ≤  𝑁 ) | 
						
							| 9 |  | nnre | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℝ ) | 
						
							| 10 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 11 |  | subge0 | ⊢ ( ( 𝑁  ∈  ℝ  ∧  1  ∈  ℝ )  →  ( 0  ≤  ( 𝑁  −  1 )  ↔  1  ≤  𝑁 ) ) | 
						
							| 12 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 13 |  | resubcl | ⊢ ( ( 𝑁  ∈  ℝ  ∧  1  ∈  ℝ )  →  ( 𝑁  −  1 )  ∈  ℝ ) | 
						
							| 14 |  | lenlt | ⊢ ( ( 0  ∈  ℝ  ∧  ( 𝑁  −  1 )  ∈  ℝ )  →  ( 0  ≤  ( 𝑁  −  1 )  ↔  ¬  ( 𝑁  −  1 )  <  0 ) ) | 
						
							| 15 | 12 13 14 | sylancr | ⊢ ( ( 𝑁  ∈  ℝ  ∧  1  ∈  ℝ )  →  ( 0  ≤  ( 𝑁  −  1 )  ↔  ¬  ( 𝑁  −  1 )  <  0 ) ) | 
						
							| 16 | 11 15 | bitr3d | ⊢ ( ( 𝑁  ∈  ℝ  ∧  1  ∈  ℝ )  →  ( 1  ≤  𝑁  ↔  ¬  ( 𝑁  −  1 )  <  0 ) ) | 
						
							| 17 | 9 10 16 | sylancl | ⊢ ( 𝑁  ∈  ℕ  →  ( 1  ≤  𝑁  ↔  ¬  ( 𝑁  −  1 )  <  0 ) ) | 
						
							| 18 | 8 17 | mpbid | ⊢ ( 𝑁  ∈  ℕ  →  ¬  ( 𝑁  −  1 )  <  0 ) | 
						
							| 19 |  | nnne0 | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ≠  0 ) | 
						
							| 20 | 19 | neneqd | ⊢ ( 𝑁  ∈  ℕ  →  ¬  𝑁  =  0 ) | 
						
							| 21 | 18 20 | 2falsed | ⊢ ( 𝑁  ∈  ℕ  →  ( ( 𝑁  −  1 )  <  0  ↔  𝑁  =  0 ) ) | 
						
							| 22 |  | oveq1 | ⊢ ( 𝑁  =  0  →  ( 𝑁  −  1 )  =  ( 0  −  1 ) ) | 
						
							| 23 |  | df-neg | ⊢ - 1  =  ( 0  −  1 ) | 
						
							| 24 | 22 23 | eqtr4di | ⊢ ( 𝑁  =  0  →  ( 𝑁  −  1 )  =  - 1 ) | 
						
							| 25 |  | neg1lt0 | ⊢ - 1  <  0 | 
						
							| 26 | 24 25 | eqbrtrdi | ⊢ ( 𝑁  =  0  →  ( 𝑁  −  1 )  <  0 ) | 
						
							| 27 |  | id | ⊢ ( 𝑁  =  0  →  𝑁  =  0 ) | 
						
							| 28 | 26 27 | 2thd | ⊢ ( 𝑁  =  0  →  ( ( 𝑁  −  1 )  <  0  ↔  𝑁  =  0 ) ) | 
						
							| 29 | 21 28 | jaoi | ⊢ ( ( 𝑁  ∈  ℕ  ∨  𝑁  =  0 )  →  ( ( 𝑁  −  1 )  <  0  ↔  𝑁  =  0 ) ) | 
						
							| 30 | 7 29 | sylbi | ⊢ ( 𝑁  ∈  ℕ0  →  ( ( 𝑁  −  1 )  <  0  ↔  𝑁  =  0 ) ) | 
						
							| 31 | 6 30 | bitr3d | ⊢ ( 𝑁  ∈  ℕ0  →  ( ( 0 ... ( 𝑁  −  1 ) )  =  ∅  ↔  𝑁  =  0 ) ) |