Metamath Proof Explorer


Theorem shftvalg

Description: Value of a sequence shifted by A . (Contributed by Scott Fenton, 16-Dec-2017)

Ref Expression
Assertion shftvalg ( ( 𝐹𝑉𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐹 shift 𝐴 ) ‘ 𝐵 ) = ( 𝐹 ‘ ( 𝐵𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 oveq1 ( 𝑓 = 𝐹 → ( 𝑓 shift 𝐴 ) = ( 𝐹 shift 𝐴 ) )
2 1 fveq1d ( 𝑓 = 𝐹 → ( ( 𝑓 shift 𝐴 ) ‘ 𝐵 ) = ( ( 𝐹 shift 𝐴 ) ‘ 𝐵 ) )
3 fveq1 ( 𝑓 = 𝐹 → ( 𝑓 ‘ ( 𝐵𝐴 ) ) = ( 𝐹 ‘ ( 𝐵𝐴 ) ) )
4 2 3 eqeq12d ( 𝑓 = 𝐹 → ( ( ( 𝑓 shift 𝐴 ) ‘ 𝐵 ) = ( 𝑓 ‘ ( 𝐵𝐴 ) ) ↔ ( ( 𝐹 shift 𝐴 ) ‘ 𝐵 ) = ( 𝐹 ‘ ( 𝐵𝐴 ) ) ) )
5 4 imbi2d ( 𝑓 = 𝐹 → ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝑓 shift 𝐴 ) ‘ 𝐵 ) = ( 𝑓 ‘ ( 𝐵𝐴 ) ) ) ↔ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐹 shift 𝐴 ) ‘ 𝐵 ) = ( 𝐹 ‘ ( 𝐵𝐴 ) ) ) ) )
6 vex 𝑓 ∈ V
7 6 shftval ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝑓 shift 𝐴 ) ‘ 𝐵 ) = ( 𝑓 ‘ ( 𝐵𝐴 ) ) )
8 5 7 vtoclg ( 𝐹𝑉 → ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐹 shift 𝐴 ) ‘ 𝐵 ) = ( 𝐹 ‘ ( 𝐵𝐴 ) ) ) )
9 8 3impib ( ( 𝐹𝑉𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐹 shift 𝐴 ) ‘ 𝐵 ) = ( 𝐹 ‘ ( 𝐵𝐴 ) ) )