Metamath Proof Explorer


Theorem shftvalg

Description: Value of a sequence shifted by A . (Contributed by Scott Fenton, 16-Dec-2017)

Ref Expression
Assertion shftvalg FVABFshiftAB=FBA

Proof

Step Hyp Ref Expression
1 oveq1 f=FfshiftA=FshiftA
2 1 fveq1d f=FfshiftAB=FshiftAB
3 fveq1 f=FfBA=FBA
4 2 3 eqeq12d f=FfshiftAB=fBAFshiftAB=FBA
5 4 imbi2d f=FABfshiftAB=fBAABFshiftAB=FBA
6 vex fV
7 6 shftval ABfshiftAB=fBA
8 5 7 vtoclg FVABFshiftAB=FBA
9 8 3impib FVABFshiftAB=FBA