Step |
Hyp |
Ref |
Expression |
1 |
|
oveq1 |
|- ( f = F -> ( f shift A ) = ( F shift A ) ) |
2 |
1
|
fveq1d |
|- ( f = F -> ( ( f shift A ) ` B ) = ( ( F shift A ) ` B ) ) |
3 |
|
fveq1 |
|- ( f = F -> ( f ` ( B - A ) ) = ( F ` ( B - A ) ) ) |
4 |
2 3
|
eqeq12d |
|- ( f = F -> ( ( ( f shift A ) ` B ) = ( f ` ( B - A ) ) <-> ( ( F shift A ) ` B ) = ( F ` ( B - A ) ) ) ) |
5 |
4
|
imbi2d |
|- ( f = F -> ( ( ( A e. CC /\ B e. CC ) -> ( ( f shift A ) ` B ) = ( f ` ( B - A ) ) ) <-> ( ( A e. CC /\ B e. CC ) -> ( ( F shift A ) ` B ) = ( F ` ( B - A ) ) ) ) ) |
6 |
|
vex |
|- f e. _V |
7 |
6
|
shftval |
|- ( ( A e. CC /\ B e. CC ) -> ( ( f shift A ) ` B ) = ( f ` ( B - A ) ) ) |
8 |
5 7
|
vtoclg |
|- ( F e. V -> ( ( A e. CC /\ B e. CC ) -> ( ( F shift A ) ` B ) = ( F ` ( B - A ) ) ) ) |
9 |
8
|
3impib |
|- ( ( F e. V /\ A e. CC /\ B e. CC ) -> ( ( F shift A ) ` B ) = ( F ` ( B - A ) ) ) |