| Step |
Hyp |
Ref |
Expression |
| 1 |
|
divcnvlin.1 |
|- Z = ( ZZ>= ` M ) |
| 2 |
|
divcnvlin.2 |
|- ( ph -> M e. ZZ ) |
| 3 |
|
divcnvlin.3 |
|- ( ph -> A e. CC ) |
| 4 |
|
divcnvlin.4 |
|- ( ph -> B e. ZZ ) |
| 5 |
|
divcnvlin.5 |
|- ( ph -> F e. V ) |
| 6 |
|
divcnvlin.6 |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) = ( ( k + A ) / ( k + B ) ) ) |
| 7 |
|
nncn |
|- ( m e. NN -> m e. CC ) |
| 8 |
7
|
adantl |
|- ( ( ph /\ m e. NN ) -> m e. CC ) |
| 9 |
4
|
zcnd |
|- ( ph -> B e. CC ) |
| 10 |
3 9
|
subcld |
|- ( ph -> ( A - B ) e. CC ) |
| 11 |
10
|
adantr |
|- ( ( ph /\ m e. NN ) -> ( A - B ) e. CC ) |
| 12 |
|
nnne0 |
|- ( m e. NN -> m =/= 0 ) |
| 13 |
12
|
adantl |
|- ( ( ph /\ m e. NN ) -> m =/= 0 ) |
| 14 |
8 11 8 13
|
divdird |
|- ( ( ph /\ m e. NN ) -> ( ( m + ( A - B ) ) / m ) = ( ( m / m ) + ( ( A - B ) / m ) ) ) |
| 15 |
8 13
|
dividd |
|- ( ( ph /\ m e. NN ) -> ( m / m ) = 1 ) |
| 16 |
15
|
oveq1d |
|- ( ( ph /\ m e. NN ) -> ( ( m / m ) + ( ( A - B ) / m ) ) = ( 1 + ( ( A - B ) / m ) ) ) |
| 17 |
14 16
|
eqtrd |
|- ( ( ph /\ m e. NN ) -> ( ( m + ( A - B ) ) / m ) = ( 1 + ( ( A - B ) / m ) ) ) |
| 18 |
17
|
mpteq2dva |
|- ( ph -> ( m e. NN |-> ( ( m + ( A - B ) ) / m ) ) = ( m e. NN |-> ( 1 + ( ( A - B ) / m ) ) ) ) |
| 19 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 20 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
| 21 |
|
divcnv |
|- ( ( A - B ) e. CC -> ( m e. NN |-> ( ( A - B ) / m ) ) ~~> 0 ) |
| 22 |
10 21
|
syl |
|- ( ph -> ( m e. NN |-> ( ( A - B ) / m ) ) ~~> 0 ) |
| 23 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
| 24 |
|
nnex |
|- NN e. _V |
| 25 |
24
|
mptex |
|- ( m e. NN |-> ( 1 + ( ( A - B ) / m ) ) ) e. _V |
| 26 |
25
|
a1i |
|- ( ph -> ( m e. NN |-> ( 1 + ( ( A - B ) / m ) ) ) e. _V ) |
| 27 |
11 8 13
|
divcld |
|- ( ( ph /\ m e. NN ) -> ( ( A - B ) / m ) e. CC ) |
| 28 |
27
|
fmpttd |
|- ( ph -> ( m e. NN |-> ( ( A - B ) / m ) ) : NN --> CC ) |
| 29 |
28
|
ffvelcdmda |
|- ( ( ph /\ k e. NN ) -> ( ( m e. NN |-> ( ( A - B ) / m ) ) ` k ) e. CC ) |
| 30 |
|
oveq2 |
|- ( m = k -> ( ( A - B ) / m ) = ( ( A - B ) / k ) ) |
| 31 |
30
|
oveq2d |
|- ( m = k -> ( 1 + ( ( A - B ) / m ) ) = ( 1 + ( ( A - B ) / k ) ) ) |
| 32 |
|
eqid |
|- ( m e. NN |-> ( 1 + ( ( A - B ) / m ) ) ) = ( m e. NN |-> ( 1 + ( ( A - B ) / m ) ) ) |
| 33 |
|
ovex |
|- ( 1 + ( ( A - B ) / k ) ) e. _V |
| 34 |
31 32 33
|
fvmpt |
|- ( k e. NN -> ( ( m e. NN |-> ( 1 + ( ( A - B ) / m ) ) ) ` k ) = ( 1 + ( ( A - B ) / k ) ) ) |
| 35 |
|
eqid |
|- ( m e. NN |-> ( ( A - B ) / m ) ) = ( m e. NN |-> ( ( A - B ) / m ) ) |
| 36 |
|
ovex |
|- ( ( A - B ) / k ) e. _V |
| 37 |
30 35 36
|
fvmpt |
|- ( k e. NN -> ( ( m e. NN |-> ( ( A - B ) / m ) ) ` k ) = ( ( A - B ) / k ) ) |
| 38 |
37
|
oveq2d |
|- ( k e. NN -> ( 1 + ( ( m e. NN |-> ( ( A - B ) / m ) ) ` k ) ) = ( 1 + ( ( A - B ) / k ) ) ) |
| 39 |
34 38
|
eqtr4d |
|- ( k e. NN -> ( ( m e. NN |-> ( 1 + ( ( A - B ) / m ) ) ) ` k ) = ( 1 + ( ( m e. NN |-> ( ( A - B ) / m ) ) ` k ) ) ) |
| 40 |
39
|
adantl |
|- ( ( ph /\ k e. NN ) -> ( ( m e. NN |-> ( 1 + ( ( A - B ) / m ) ) ) ` k ) = ( 1 + ( ( m e. NN |-> ( ( A - B ) / m ) ) ` k ) ) ) |
| 41 |
19 20 22 23 26 29 40
|
climaddc2 |
|- ( ph -> ( m e. NN |-> ( 1 + ( ( A - B ) / m ) ) ) ~~> ( 1 + 0 ) ) |
| 42 |
18 41
|
eqbrtrd |
|- ( ph -> ( m e. NN |-> ( ( m + ( A - B ) ) / m ) ) ~~> ( 1 + 0 ) ) |
| 43 |
|
nnssz |
|- NN C_ ZZ |
| 44 |
|
resmpt |
|- ( NN C_ ZZ -> ( ( m e. ZZ |-> ( ( m + ( A - B ) ) / m ) ) |` NN ) = ( m e. NN |-> ( ( m + ( A - B ) ) / m ) ) ) |
| 45 |
43 44
|
ax-mp |
|- ( ( m e. ZZ |-> ( ( m + ( A - B ) ) / m ) ) |` NN ) = ( m e. NN |-> ( ( m + ( A - B ) ) / m ) ) |
| 46 |
19
|
reseq2i |
|- ( ( m e. ZZ |-> ( ( m + ( A - B ) ) / m ) ) |` NN ) = ( ( m e. ZZ |-> ( ( m + ( A - B ) ) / m ) ) |` ( ZZ>= ` 1 ) ) |
| 47 |
45 46
|
eqtr3i |
|- ( m e. NN |-> ( ( m + ( A - B ) ) / m ) ) = ( ( m e. ZZ |-> ( ( m + ( A - B ) ) / m ) ) |` ( ZZ>= ` 1 ) ) |
| 48 |
|
1p0e1 |
|- ( 1 + 0 ) = 1 |
| 49 |
47 48
|
breq12i |
|- ( ( m e. NN |-> ( ( m + ( A - B ) ) / m ) ) ~~> ( 1 + 0 ) <-> ( ( m e. ZZ |-> ( ( m + ( A - B ) ) / m ) ) |` ( ZZ>= ` 1 ) ) ~~> 1 ) |
| 50 |
|
1z |
|- 1 e. ZZ |
| 51 |
|
zex |
|- ZZ e. _V |
| 52 |
51
|
mptex |
|- ( m e. ZZ |-> ( ( m + ( A - B ) ) / m ) ) e. _V |
| 53 |
|
climres |
|- ( ( 1 e. ZZ /\ ( m e. ZZ |-> ( ( m + ( A - B ) ) / m ) ) e. _V ) -> ( ( ( m e. ZZ |-> ( ( m + ( A - B ) ) / m ) ) |` ( ZZ>= ` 1 ) ) ~~> 1 <-> ( m e. ZZ |-> ( ( m + ( A - B ) ) / m ) ) ~~> 1 ) ) |
| 54 |
50 52 53
|
mp2an |
|- ( ( ( m e. ZZ |-> ( ( m + ( A - B ) ) / m ) ) |` ( ZZ>= ` 1 ) ) ~~> 1 <-> ( m e. ZZ |-> ( ( m + ( A - B ) ) / m ) ) ~~> 1 ) |
| 55 |
49 54
|
bitri |
|- ( ( m e. NN |-> ( ( m + ( A - B ) ) / m ) ) ~~> ( 1 + 0 ) <-> ( m e. ZZ |-> ( ( m + ( A - B ) ) / m ) ) ~~> 1 ) |
| 56 |
42 55
|
sylib |
|- ( ph -> ( m e. ZZ |-> ( ( m + ( A - B ) ) / m ) ) ~~> 1 ) |
| 57 |
52
|
a1i |
|- ( ph -> ( m e. ZZ |-> ( ( m + ( A - B ) ) / m ) ) e. _V ) |
| 58 |
|
eluzelz |
|- ( k e. ( ZZ>= ` M ) -> k e. ZZ ) |
| 59 |
58 1
|
eleq2s |
|- ( k e. Z -> k e. ZZ ) |
| 60 |
59
|
zcnd |
|- ( k e. Z -> k e. CC ) |
| 61 |
60
|
adantl |
|- ( ( ph /\ k e. Z ) -> k e. CC ) |
| 62 |
4
|
adantr |
|- ( ( ph /\ k e. Z ) -> B e. ZZ ) |
| 63 |
62
|
zcnd |
|- ( ( ph /\ k e. Z ) -> B e. CC ) |
| 64 |
3
|
adantr |
|- ( ( ph /\ k e. Z ) -> A e. CC ) |
| 65 |
61 63 64
|
ppncand |
|- ( ( ph /\ k e. Z ) -> ( ( k + B ) + ( A - B ) ) = ( k + A ) ) |
| 66 |
65
|
oveq1d |
|- ( ( ph /\ k e. Z ) -> ( ( ( k + B ) + ( A - B ) ) / ( k + B ) ) = ( ( k + A ) / ( k + B ) ) ) |
| 67 |
59
|
adantl |
|- ( ( ph /\ k e. Z ) -> k e. ZZ ) |
| 68 |
67 62
|
zaddcld |
|- ( ( ph /\ k e. Z ) -> ( k + B ) e. ZZ ) |
| 69 |
|
oveq1 |
|- ( m = ( k + B ) -> ( m + ( A - B ) ) = ( ( k + B ) + ( A - B ) ) ) |
| 70 |
|
id |
|- ( m = ( k + B ) -> m = ( k + B ) ) |
| 71 |
69 70
|
oveq12d |
|- ( m = ( k + B ) -> ( ( m + ( A - B ) ) / m ) = ( ( ( k + B ) + ( A - B ) ) / ( k + B ) ) ) |
| 72 |
|
eqid |
|- ( m e. ZZ |-> ( ( m + ( A - B ) ) / m ) ) = ( m e. ZZ |-> ( ( m + ( A - B ) ) / m ) ) |
| 73 |
|
ovex |
|- ( ( ( k + B ) + ( A - B ) ) / ( k + B ) ) e. _V |
| 74 |
71 72 73
|
fvmpt |
|- ( ( k + B ) e. ZZ -> ( ( m e. ZZ |-> ( ( m + ( A - B ) ) / m ) ) ` ( k + B ) ) = ( ( ( k + B ) + ( A - B ) ) / ( k + B ) ) ) |
| 75 |
68 74
|
syl |
|- ( ( ph /\ k e. Z ) -> ( ( m e. ZZ |-> ( ( m + ( A - B ) ) / m ) ) ` ( k + B ) ) = ( ( ( k + B ) + ( A - B ) ) / ( k + B ) ) ) |
| 76 |
66 75 6
|
3eqtr4d |
|- ( ( ph /\ k e. Z ) -> ( ( m e. ZZ |-> ( ( m + ( A - B ) ) / m ) ) ` ( k + B ) ) = ( F ` k ) ) |
| 77 |
1 2 4 5 57 76
|
climshft2 |
|- ( ph -> ( F ~~> 1 <-> ( m e. ZZ |-> ( ( m + ( A - B ) ) / m ) ) ~~> 1 ) ) |
| 78 |
56 77
|
mpbird |
|- ( ph -> F ~~> 1 ) |