Step |
Hyp |
Ref |
Expression |
1 |
|
divcnvlin.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
2 |
|
divcnvlin.2 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
3 |
|
divcnvlin.3 |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
4 |
|
divcnvlin.4 |
⊢ ( 𝜑 → 𝐵 ∈ ℤ ) |
5 |
|
divcnvlin.5 |
⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) |
6 |
|
divcnvlin.6 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = ( ( 𝑘 + 𝐴 ) / ( 𝑘 + 𝐵 ) ) ) |
7 |
|
nncn |
⊢ ( 𝑚 ∈ ℕ → 𝑚 ∈ ℂ ) |
8 |
7
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 𝑚 ∈ ℂ ) |
9 |
4
|
zcnd |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
10 |
3 9
|
subcld |
⊢ ( 𝜑 → ( 𝐴 − 𝐵 ) ∈ ℂ ) |
11 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝐴 − 𝐵 ) ∈ ℂ ) |
12 |
|
nnne0 |
⊢ ( 𝑚 ∈ ℕ → 𝑚 ≠ 0 ) |
13 |
12
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 𝑚 ≠ 0 ) |
14 |
8 11 8 13
|
divdird |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 𝑚 + ( 𝐴 − 𝐵 ) ) / 𝑚 ) = ( ( 𝑚 / 𝑚 ) + ( ( 𝐴 − 𝐵 ) / 𝑚 ) ) ) |
15 |
8 13
|
dividd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑚 / 𝑚 ) = 1 ) |
16 |
15
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 𝑚 / 𝑚 ) + ( ( 𝐴 − 𝐵 ) / 𝑚 ) ) = ( 1 + ( ( 𝐴 − 𝐵 ) / 𝑚 ) ) ) |
17 |
14 16
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 𝑚 + ( 𝐴 − 𝐵 ) ) / 𝑚 ) = ( 1 + ( ( 𝐴 − 𝐵 ) / 𝑚 ) ) ) |
18 |
17
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑚 ∈ ℕ ↦ ( ( 𝑚 + ( 𝐴 − 𝐵 ) ) / 𝑚 ) ) = ( 𝑚 ∈ ℕ ↦ ( 1 + ( ( 𝐴 − 𝐵 ) / 𝑚 ) ) ) ) |
19 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
20 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
21 |
|
divcnv |
⊢ ( ( 𝐴 − 𝐵 ) ∈ ℂ → ( 𝑚 ∈ ℕ ↦ ( ( 𝐴 − 𝐵 ) / 𝑚 ) ) ⇝ 0 ) |
22 |
10 21
|
syl |
⊢ ( 𝜑 → ( 𝑚 ∈ ℕ ↦ ( ( 𝐴 − 𝐵 ) / 𝑚 ) ) ⇝ 0 ) |
23 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
24 |
|
nnex |
⊢ ℕ ∈ V |
25 |
24
|
mptex |
⊢ ( 𝑚 ∈ ℕ ↦ ( 1 + ( ( 𝐴 − 𝐵 ) / 𝑚 ) ) ) ∈ V |
26 |
25
|
a1i |
⊢ ( 𝜑 → ( 𝑚 ∈ ℕ ↦ ( 1 + ( ( 𝐴 − 𝐵 ) / 𝑚 ) ) ) ∈ V ) |
27 |
11 8 13
|
divcld |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 𝐴 − 𝐵 ) / 𝑚 ) ∈ ℂ ) |
28 |
27
|
fmpttd |
⊢ ( 𝜑 → ( 𝑚 ∈ ℕ ↦ ( ( 𝐴 − 𝐵 ) / 𝑚 ) ) : ℕ ⟶ ℂ ) |
29 |
28
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑚 ∈ ℕ ↦ ( ( 𝐴 − 𝐵 ) / 𝑚 ) ) ‘ 𝑘 ) ∈ ℂ ) |
30 |
|
oveq2 |
⊢ ( 𝑚 = 𝑘 → ( ( 𝐴 − 𝐵 ) / 𝑚 ) = ( ( 𝐴 − 𝐵 ) / 𝑘 ) ) |
31 |
30
|
oveq2d |
⊢ ( 𝑚 = 𝑘 → ( 1 + ( ( 𝐴 − 𝐵 ) / 𝑚 ) ) = ( 1 + ( ( 𝐴 − 𝐵 ) / 𝑘 ) ) ) |
32 |
|
eqid |
⊢ ( 𝑚 ∈ ℕ ↦ ( 1 + ( ( 𝐴 − 𝐵 ) / 𝑚 ) ) ) = ( 𝑚 ∈ ℕ ↦ ( 1 + ( ( 𝐴 − 𝐵 ) / 𝑚 ) ) ) |
33 |
|
ovex |
⊢ ( 1 + ( ( 𝐴 − 𝐵 ) / 𝑘 ) ) ∈ V |
34 |
31 32 33
|
fvmpt |
⊢ ( 𝑘 ∈ ℕ → ( ( 𝑚 ∈ ℕ ↦ ( 1 + ( ( 𝐴 − 𝐵 ) / 𝑚 ) ) ) ‘ 𝑘 ) = ( 1 + ( ( 𝐴 − 𝐵 ) / 𝑘 ) ) ) |
35 |
|
eqid |
⊢ ( 𝑚 ∈ ℕ ↦ ( ( 𝐴 − 𝐵 ) / 𝑚 ) ) = ( 𝑚 ∈ ℕ ↦ ( ( 𝐴 − 𝐵 ) / 𝑚 ) ) |
36 |
|
ovex |
⊢ ( ( 𝐴 − 𝐵 ) / 𝑘 ) ∈ V |
37 |
30 35 36
|
fvmpt |
⊢ ( 𝑘 ∈ ℕ → ( ( 𝑚 ∈ ℕ ↦ ( ( 𝐴 − 𝐵 ) / 𝑚 ) ) ‘ 𝑘 ) = ( ( 𝐴 − 𝐵 ) / 𝑘 ) ) |
38 |
37
|
oveq2d |
⊢ ( 𝑘 ∈ ℕ → ( 1 + ( ( 𝑚 ∈ ℕ ↦ ( ( 𝐴 − 𝐵 ) / 𝑚 ) ) ‘ 𝑘 ) ) = ( 1 + ( ( 𝐴 − 𝐵 ) / 𝑘 ) ) ) |
39 |
34 38
|
eqtr4d |
⊢ ( 𝑘 ∈ ℕ → ( ( 𝑚 ∈ ℕ ↦ ( 1 + ( ( 𝐴 − 𝐵 ) / 𝑚 ) ) ) ‘ 𝑘 ) = ( 1 + ( ( 𝑚 ∈ ℕ ↦ ( ( 𝐴 − 𝐵 ) / 𝑚 ) ) ‘ 𝑘 ) ) ) |
40 |
39
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑚 ∈ ℕ ↦ ( 1 + ( ( 𝐴 − 𝐵 ) / 𝑚 ) ) ) ‘ 𝑘 ) = ( 1 + ( ( 𝑚 ∈ ℕ ↦ ( ( 𝐴 − 𝐵 ) / 𝑚 ) ) ‘ 𝑘 ) ) ) |
41 |
19 20 22 23 26 29 40
|
climaddc2 |
⊢ ( 𝜑 → ( 𝑚 ∈ ℕ ↦ ( 1 + ( ( 𝐴 − 𝐵 ) / 𝑚 ) ) ) ⇝ ( 1 + 0 ) ) |
42 |
18 41
|
eqbrtrd |
⊢ ( 𝜑 → ( 𝑚 ∈ ℕ ↦ ( ( 𝑚 + ( 𝐴 − 𝐵 ) ) / 𝑚 ) ) ⇝ ( 1 + 0 ) ) |
43 |
|
nnssz |
⊢ ℕ ⊆ ℤ |
44 |
|
resmpt |
⊢ ( ℕ ⊆ ℤ → ( ( 𝑚 ∈ ℤ ↦ ( ( 𝑚 + ( 𝐴 − 𝐵 ) ) / 𝑚 ) ) ↾ ℕ ) = ( 𝑚 ∈ ℕ ↦ ( ( 𝑚 + ( 𝐴 − 𝐵 ) ) / 𝑚 ) ) ) |
45 |
43 44
|
ax-mp |
⊢ ( ( 𝑚 ∈ ℤ ↦ ( ( 𝑚 + ( 𝐴 − 𝐵 ) ) / 𝑚 ) ) ↾ ℕ ) = ( 𝑚 ∈ ℕ ↦ ( ( 𝑚 + ( 𝐴 − 𝐵 ) ) / 𝑚 ) ) |
46 |
19
|
reseq2i |
⊢ ( ( 𝑚 ∈ ℤ ↦ ( ( 𝑚 + ( 𝐴 − 𝐵 ) ) / 𝑚 ) ) ↾ ℕ ) = ( ( 𝑚 ∈ ℤ ↦ ( ( 𝑚 + ( 𝐴 − 𝐵 ) ) / 𝑚 ) ) ↾ ( ℤ≥ ‘ 1 ) ) |
47 |
45 46
|
eqtr3i |
⊢ ( 𝑚 ∈ ℕ ↦ ( ( 𝑚 + ( 𝐴 − 𝐵 ) ) / 𝑚 ) ) = ( ( 𝑚 ∈ ℤ ↦ ( ( 𝑚 + ( 𝐴 − 𝐵 ) ) / 𝑚 ) ) ↾ ( ℤ≥ ‘ 1 ) ) |
48 |
|
1p0e1 |
⊢ ( 1 + 0 ) = 1 |
49 |
47 48
|
breq12i |
⊢ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑚 + ( 𝐴 − 𝐵 ) ) / 𝑚 ) ) ⇝ ( 1 + 0 ) ↔ ( ( 𝑚 ∈ ℤ ↦ ( ( 𝑚 + ( 𝐴 − 𝐵 ) ) / 𝑚 ) ) ↾ ( ℤ≥ ‘ 1 ) ) ⇝ 1 ) |
50 |
|
1z |
⊢ 1 ∈ ℤ |
51 |
|
zex |
⊢ ℤ ∈ V |
52 |
51
|
mptex |
⊢ ( 𝑚 ∈ ℤ ↦ ( ( 𝑚 + ( 𝐴 − 𝐵 ) ) / 𝑚 ) ) ∈ V |
53 |
|
climres |
⊢ ( ( 1 ∈ ℤ ∧ ( 𝑚 ∈ ℤ ↦ ( ( 𝑚 + ( 𝐴 − 𝐵 ) ) / 𝑚 ) ) ∈ V ) → ( ( ( 𝑚 ∈ ℤ ↦ ( ( 𝑚 + ( 𝐴 − 𝐵 ) ) / 𝑚 ) ) ↾ ( ℤ≥ ‘ 1 ) ) ⇝ 1 ↔ ( 𝑚 ∈ ℤ ↦ ( ( 𝑚 + ( 𝐴 − 𝐵 ) ) / 𝑚 ) ) ⇝ 1 ) ) |
54 |
50 52 53
|
mp2an |
⊢ ( ( ( 𝑚 ∈ ℤ ↦ ( ( 𝑚 + ( 𝐴 − 𝐵 ) ) / 𝑚 ) ) ↾ ( ℤ≥ ‘ 1 ) ) ⇝ 1 ↔ ( 𝑚 ∈ ℤ ↦ ( ( 𝑚 + ( 𝐴 − 𝐵 ) ) / 𝑚 ) ) ⇝ 1 ) |
55 |
49 54
|
bitri |
⊢ ( ( 𝑚 ∈ ℕ ↦ ( ( 𝑚 + ( 𝐴 − 𝐵 ) ) / 𝑚 ) ) ⇝ ( 1 + 0 ) ↔ ( 𝑚 ∈ ℤ ↦ ( ( 𝑚 + ( 𝐴 − 𝐵 ) ) / 𝑚 ) ) ⇝ 1 ) |
56 |
42 55
|
sylib |
⊢ ( 𝜑 → ( 𝑚 ∈ ℤ ↦ ( ( 𝑚 + ( 𝐴 − 𝐵 ) ) / 𝑚 ) ) ⇝ 1 ) |
57 |
52
|
a1i |
⊢ ( 𝜑 → ( 𝑚 ∈ ℤ ↦ ( ( 𝑚 + ( 𝐴 − 𝐵 ) ) / 𝑚 ) ) ∈ V ) |
58 |
|
eluzelz |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑘 ∈ ℤ ) |
59 |
58 1
|
eleq2s |
⊢ ( 𝑘 ∈ 𝑍 → 𝑘 ∈ ℤ ) |
60 |
59
|
zcnd |
⊢ ( 𝑘 ∈ 𝑍 → 𝑘 ∈ ℂ ) |
61 |
60
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝑘 ∈ ℂ ) |
62 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐵 ∈ ℤ ) |
63 |
62
|
zcnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐵 ∈ ℂ ) |
64 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ∈ ℂ ) |
65 |
61 63 64
|
ppncand |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑘 + 𝐵 ) + ( 𝐴 − 𝐵 ) ) = ( 𝑘 + 𝐴 ) ) |
66 |
65
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( ( 𝑘 + 𝐵 ) + ( 𝐴 − 𝐵 ) ) / ( 𝑘 + 𝐵 ) ) = ( ( 𝑘 + 𝐴 ) / ( 𝑘 + 𝐵 ) ) ) |
67 |
59
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝑘 ∈ ℤ ) |
68 |
67 62
|
zaddcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝑘 + 𝐵 ) ∈ ℤ ) |
69 |
|
oveq1 |
⊢ ( 𝑚 = ( 𝑘 + 𝐵 ) → ( 𝑚 + ( 𝐴 − 𝐵 ) ) = ( ( 𝑘 + 𝐵 ) + ( 𝐴 − 𝐵 ) ) ) |
70 |
|
id |
⊢ ( 𝑚 = ( 𝑘 + 𝐵 ) → 𝑚 = ( 𝑘 + 𝐵 ) ) |
71 |
69 70
|
oveq12d |
⊢ ( 𝑚 = ( 𝑘 + 𝐵 ) → ( ( 𝑚 + ( 𝐴 − 𝐵 ) ) / 𝑚 ) = ( ( ( 𝑘 + 𝐵 ) + ( 𝐴 − 𝐵 ) ) / ( 𝑘 + 𝐵 ) ) ) |
72 |
|
eqid |
⊢ ( 𝑚 ∈ ℤ ↦ ( ( 𝑚 + ( 𝐴 − 𝐵 ) ) / 𝑚 ) ) = ( 𝑚 ∈ ℤ ↦ ( ( 𝑚 + ( 𝐴 − 𝐵 ) ) / 𝑚 ) ) |
73 |
|
ovex |
⊢ ( ( ( 𝑘 + 𝐵 ) + ( 𝐴 − 𝐵 ) ) / ( 𝑘 + 𝐵 ) ) ∈ V |
74 |
71 72 73
|
fvmpt |
⊢ ( ( 𝑘 + 𝐵 ) ∈ ℤ → ( ( 𝑚 ∈ ℤ ↦ ( ( 𝑚 + ( 𝐴 − 𝐵 ) ) / 𝑚 ) ) ‘ ( 𝑘 + 𝐵 ) ) = ( ( ( 𝑘 + 𝐵 ) + ( 𝐴 − 𝐵 ) ) / ( 𝑘 + 𝐵 ) ) ) |
75 |
68 74
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑚 ∈ ℤ ↦ ( ( 𝑚 + ( 𝐴 − 𝐵 ) ) / 𝑚 ) ) ‘ ( 𝑘 + 𝐵 ) ) = ( ( ( 𝑘 + 𝐵 ) + ( 𝐴 − 𝐵 ) ) / ( 𝑘 + 𝐵 ) ) ) |
76 |
66 75 6
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑚 ∈ ℤ ↦ ( ( 𝑚 + ( 𝐴 − 𝐵 ) ) / 𝑚 ) ) ‘ ( 𝑘 + 𝐵 ) ) = ( 𝐹 ‘ 𝑘 ) ) |
77 |
1 2 4 5 57 76
|
climshft2 |
⊢ ( 𝜑 → ( 𝐹 ⇝ 1 ↔ ( 𝑚 ∈ ℤ ↦ ( ( 𝑚 + ( 𝐴 − 𝐵 ) ) / 𝑚 ) ) ⇝ 1 ) ) |
78 |
56 77
|
mpbird |
⊢ ( 𝜑 → 𝐹 ⇝ 1 ) |