Step |
Hyp |
Ref |
Expression |
1 |
|
climlec3.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
2 |
|
climlec3.2 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
3 |
|
climlec3.3 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
4 |
|
climlec3.4 |
⊢ ( 𝜑 → 𝐹 ⇝ 𝐴 ) |
5 |
|
climlec3.5 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
6 |
|
climlec3.6 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ≤ 𝐵 ) |
7 |
3
|
renegcld |
⊢ ( 𝜑 → - 𝐵 ∈ ℝ ) |
8 |
|
0cnd |
⊢ ( 𝜑 → 0 ∈ ℂ ) |
9 |
1
|
fvexi |
⊢ 𝑍 ∈ V |
10 |
9
|
mptex |
⊢ ( 𝑚 ∈ 𝑍 ↦ - ( 𝐹 ‘ 𝑚 ) ) ∈ V |
11 |
10
|
a1i |
⊢ ( 𝜑 → ( 𝑚 ∈ 𝑍 ↦ - ( 𝐹 ‘ 𝑚 ) ) ∈ V ) |
12 |
5
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
13 |
|
eqid |
⊢ ( 𝑚 ∈ 𝑍 ↦ - ( 𝐹 ‘ 𝑚 ) ) = ( 𝑚 ∈ 𝑍 ↦ - ( 𝐹 ‘ 𝑚 ) ) |
14 |
|
fveq2 |
⊢ ( 𝑚 = 𝑘 → ( 𝐹 ‘ 𝑚 ) = ( 𝐹 ‘ 𝑘 ) ) |
15 |
14
|
negeqd |
⊢ ( 𝑚 = 𝑘 → - ( 𝐹 ‘ 𝑚 ) = - ( 𝐹 ‘ 𝑘 ) ) |
16 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝑘 ∈ 𝑍 ) |
17 |
5
|
renegcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → - ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
18 |
13 15 16 17
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑚 ∈ 𝑍 ↦ - ( 𝐹 ‘ 𝑚 ) ) ‘ 𝑘 ) = - ( 𝐹 ‘ 𝑘 ) ) |
19 |
|
df-neg |
⊢ - ( 𝐹 ‘ 𝑘 ) = ( 0 − ( 𝐹 ‘ 𝑘 ) ) |
20 |
18 19
|
eqtrdi |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑚 ∈ 𝑍 ↦ - ( 𝐹 ‘ 𝑚 ) ) ‘ 𝑘 ) = ( 0 − ( 𝐹 ‘ 𝑘 ) ) ) |
21 |
1 2 4 8 11 12 20
|
climsubc2 |
⊢ ( 𝜑 → ( 𝑚 ∈ 𝑍 ↦ - ( 𝐹 ‘ 𝑚 ) ) ⇝ ( 0 − 𝐴 ) ) |
22 |
|
df-neg |
⊢ - 𝐴 = ( 0 − 𝐴 ) |
23 |
21 22
|
breqtrrdi |
⊢ ( 𝜑 → ( 𝑚 ∈ 𝑍 ↦ - ( 𝐹 ‘ 𝑚 ) ) ⇝ - 𝐴 ) |
24 |
18 17
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑚 ∈ 𝑍 ↦ - ( 𝐹 ‘ 𝑚 ) ) ‘ 𝑘 ) ∈ ℝ ) |
25 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐵 ∈ ℝ ) |
26 |
5 25
|
lenegd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝐹 ‘ 𝑘 ) ≤ 𝐵 ↔ - 𝐵 ≤ - ( 𝐹 ‘ 𝑘 ) ) ) |
27 |
6 26
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → - 𝐵 ≤ - ( 𝐹 ‘ 𝑘 ) ) |
28 |
27 18
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → - 𝐵 ≤ ( ( 𝑚 ∈ 𝑍 ↦ - ( 𝐹 ‘ 𝑚 ) ) ‘ 𝑘 ) ) |
29 |
1 2 7 23 24 28
|
climlec2 |
⊢ ( 𝜑 → - 𝐵 ≤ - 𝐴 ) |
30 |
1 2 4 5
|
climrecl |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
31 |
30 3
|
lenegd |
⊢ ( 𝜑 → ( 𝐴 ≤ 𝐵 ↔ - 𝐵 ≤ - 𝐴 ) ) |
32 |
29 31
|
mpbird |
⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |