| Step | Hyp | Ref | Expression | 
						
							| 1 |  | efhalfpi | ⊢ ( exp ‘ ( i  ·  ( π  /  2 ) ) )  =  i | 
						
							| 2 |  | ax-icn | ⊢ i  ∈  ℂ | 
						
							| 3 |  | ine0 | ⊢ i  ≠  0 | 
						
							| 4 |  | halfpire | ⊢ ( π  /  2 )  ∈  ℝ | 
						
							| 5 | 4 | recni | ⊢ ( π  /  2 )  ∈  ℂ | 
						
							| 6 | 2 5 | mulcli | ⊢ ( i  ·  ( π  /  2 ) )  ∈  ℂ | 
						
							| 7 |  | pipos | ⊢ 0  <  π | 
						
							| 8 |  | pire | ⊢ π  ∈  ℝ | 
						
							| 9 |  | lt0neg2 | ⊢ ( π  ∈  ℝ  →  ( 0  <  π  ↔  - π  <  0 ) ) | 
						
							| 10 | 8 9 | ax-mp | ⊢ ( 0  <  π  ↔  - π  <  0 ) | 
						
							| 11 | 7 10 | mpbi | ⊢ - π  <  0 | 
						
							| 12 |  | halfpos2 | ⊢ ( π  ∈  ℝ  →  ( 0  <  π  ↔  0  <  ( π  /  2 ) ) ) | 
						
							| 13 | 8 12 | ax-mp | ⊢ ( 0  <  π  ↔  0  <  ( π  /  2 ) ) | 
						
							| 14 | 7 13 | mpbi | ⊢ 0  <  ( π  /  2 ) | 
						
							| 15 | 8 | renegcli | ⊢ - π  ∈  ℝ | 
						
							| 16 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 17 | 15 16 4 | lttri | ⊢ ( ( - π  <  0  ∧  0  <  ( π  /  2 ) )  →  - π  <  ( π  /  2 ) ) | 
						
							| 18 | 11 14 17 | mp2an | ⊢ - π  <  ( π  /  2 ) | 
						
							| 19 |  | reim | ⊢ ( ( π  /  2 )  ∈  ℂ  →  ( ℜ ‘ ( π  /  2 ) )  =  ( ℑ ‘ ( i  ·  ( π  /  2 ) ) ) ) | 
						
							| 20 | 5 19 | ax-mp | ⊢ ( ℜ ‘ ( π  /  2 ) )  =  ( ℑ ‘ ( i  ·  ( π  /  2 ) ) ) | 
						
							| 21 |  | rere | ⊢ ( ( π  /  2 )  ∈  ℝ  →  ( ℜ ‘ ( π  /  2 ) )  =  ( π  /  2 ) ) | 
						
							| 22 | 4 21 | ax-mp | ⊢ ( ℜ ‘ ( π  /  2 ) )  =  ( π  /  2 ) | 
						
							| 23 | 20 22 | eqtr3i | ⊢ ( ℑ ‘ ( i  ·  ( π  /  2 ) ) )  =  ( π  /  2 ) | 
						
							| 24 | 18 23 | breqtrri | ⊢ - π  <  ( ℑ ‘ ( i  ·  ( π  /  2 ) ) ) | 
						
							| 25 | 8 | a1i | ⊢ ( ⊤  →  π  ∈  ℝ ) | 
						
							| 26 | 25 25 | ltaddposd | ⊢ ( ⊤  →  ( 0  <  π  ↔  π  <  ( π  +  π ) ) ) | 
						
							| 27 | 7 26 | mpbii | ⊢ ( ⊤  →  π  <  ( π  +  π ) ) | 
						
							| 28 |  | picn | ⊢ π  ∈  ℂ | 
						
							| 29 | 28 | times2i | ⊢ ( π  ·  2 )  =  ( π  +  π ) | 
						
							| 30 | 27 29 | breqtrrdi | ⊢ ( ⊤  →  π  <  ( π  ·  2 ) ) | 
						
							| 31 |  | 2rp | ⊢ 2  ∈  ℝ+ | 
						
							| 32 | 31 | a1i | ⊢ ( ⊤  →  2  ∈  ℝ+ ) | 
						
							| 33 | 25 25 32 | ltdivmul2d | ⊢ ( ⊤  →  ( ( π  /  2 )  <  π  ↔  π  <  ( π  ·  2 ) ) ) | 
						
							| 34 | 30 33 | mpbird | ⊢ ( ⊤  →  ( π  /  2 )  <  π ) | 
						
							| 35 | 34 | mptru | ⊢ ( π  /  2 )  <  π | 
						
							| 36 | 4 8 35 | ltleii | ⊢ ( π  /  2 )  ≤  π | 
						
							| 37 | 23 36 | eqbrtri | ⊢ ( ℑ ‘ ( i  ·  ( π  /  2 ) ) )  ≤  π | 
						
							| 38 |  | ellogrn | ⊢ ( ( i  ·  ( π  /  2 ) )  ∈  ran  log  ↔  ( ( i  ·  ( π  /  2 ) )  ∈  ℂ  ∧  - π  <  ( ℑ ‘ ( i  ·  ( π  /  2 ) ) )  ∧  ( ℑ ‘ ( i  ·  ( π  /  2 ) ) )  ≤  π ) ) | 
						
							| 39 | 6 24 37 38 | mpbir3an | ⊢ ( i  ·  ( π  /  2 ) )  ∈  ran  log | 
						
							| 40 |  | logeftb | ⊢ ( ( i  ∈  ℂ  ∧  i  ≠  0  ∧  ( i  ·  ( π  /  2 ) )  ∈  ran  log )  →  ( ( log ‘ i )  =  ( i  ·  ( π  /  2 ) )  ↔  ( exp ‘ ( i  ·  ( π  /  2 ) ) )  =  i ) ) | 
						
							| 41 | 2 3 39 40 | mp3an | ⊢ ( ( log ‘ i )  =  ( i  ·  ( π  /  2 ) )  ↔  ( exp ‘ ( i  ·  ( π  /  2 ) ) )  =  i ) | 
						
							| 42 | 1 41 | mpbir | ⊢ ( log ‘ i )  =  ( i  ·  ( π  /  2 ) ) |