Step |
Hyp |
Ref |
Expression |
1 |
|
ax-icn |
⊢ i ∈ ℂ |
2 |
|
ine0 |
⊢ i ≠ 0 |
3 |
|
cxpef |
⊢ ( ( i ∈ ℂ ∧ i ≠ 0 ∧ i ∈ ℂ ) → ( i ↑𝑐 i ) = ( exp ‘ ( i · ( log ‘ i ) ) ) ) |
4 |
1 2 1 3
|
mp3an |
⊢ ( i ↑𝑐 i ) = ( exp ‘ ( i · ( log ‘ i ) ) ) |
5 |
|
logi |
⊢ ( log ‘ i ) = ( i · ( π / 2 ) ) |
6 |
5
|
oveq2i |
⊢ ( i · ( log ‘ i ) ) = ( i · ( i · ( π / 2 ) ) ) |
7 |
|
halfpire |
⊢ ( π / 2 ) ∈ ℝ |
8 |
7
|
recni |
⊢ ( π / 2 ) ∈ ℂ |
9 |
1 1 8
|
mulassi |
⊢ ( ( i · i ) · ( π / 2 ) ) = ( i · ( i · ( π / 2 ) ) ) |
10 |
|
ixi |
⊢ ( i · i ) = - 1 |
11 |
10
|
oveq1i |
⊢ ( ( i · i ) · ( π / 2 ) ) = ( - 1 · ( π / 2 ) ) |
12 |
6 9 11
|
3eqtr2i |
⊢ ( i · ( log ‘ i ) ) = ( - 1 · ( π / 2 ) ) |
13 |
12
|
fveq2i |
⊢ ( exp ‘ ( i · ( log ‘ i ) ) ) = ( exp ‘ ( - 1 · ( π / 2 ) ) ) |
14 |
4 13
|
eqtri |
⊢ ( i ↑𝑐 i ) = ( exp ‘ ( - 1 · ( π / 2 ) ) ) |
15 |
|
neg1rr |
⊢ - 1 ∈ ℝ |
16 |
15 7
|
remulcli |
⊢ ( - 1 · ( π / 2 ) ) ∈ ℝ |
17 |
|
reefcl |
⊢ ( ( - 1 · ( π / 2 ) ) ∈ ℝ → ( exp ‘ ( - 1 · ( π / 2 ) ) ) ∈ ℝ ) |
18 |
16 17
|
ax-mp |
⊢ ( exp ‘ ( - 1 · ( π / 2 ) ) ) ∈ ℝ |
19 |
14 18
|
eqeltri |
⊢ ( i ↑𝑐 i ) ∈ ℝ |