Metamath Proof Explorer


Theorem iexpire

Description: _i raised to itself is real. (Contributed by Scott Fenton, 13-Apr-2020)

Ref Expression
Assertion iexpire ( i ↑𝑐 i ) ∈ ℝ

Proof

Step Hyp Ref Expression
1 ax-icn i ∈ ℂ
2 ine0 i ≠ 0
3 cxpef ( ( i ∈ ℂ ∧ i ≠ 0 ∧ i ∈ ℂ ) → ( i ↑𝑐 i ) = ( exp ‘ ( i · ( log ‘ i ) ) ) )
4 1 2 1 3 mp3an ( i ↑𝑐 i ) = ( exp ‘ ( i · ( log ‘ i ) ) )
5 logi ( log ‘ i ) = ( i · ( π / 2 ) )
6 5 oveq2i ( i · ( log ‘ i ) ) = ( i · ( i · ( π / 2 ) ) )
7 halfpire ( π / 2 ) ∈ ℝ
8 7 recni ( π / 2 ) ∈ ℂ
9 1 1 8 mulassi ( ( i · i ) · ( π / 2 ) ) = ( i · ( i · ( π / 2 ) ) )
10 ixi ( i · i ) = - 1
11 10 oveq1i ( ( i · i ) · ( π / 2 ) ) = ( - 1 · ( π / 2 ) )
12 6 9 11 3eqtr2i ( i · ( log ‘ i ) ) = ( - 1 · ( π / 2 ) )
13 12 fveq2i ( exp ‘ ( i · ( log ‘ i ) ) ) = ( exp ‘ ( - 1 · ( π / 2 ) ) )
14 4 13 eqtri ( i ↑𝑐 i ) = ( exp ‘ ( - 1 · ( π / 2 ) ) )
15 neg1rr - 1 ∈ ℝ
16 15 7 remulcli ( - 1 · ( π / 2 ) ) ∈ ℝ
17 reefcl ( ( - 1 · ( π / 2 ) ) ∈ ℝ → ( exp ‘ ( - 1 · ( π / 2 ) ) ) ∈ ℝ )
18 16 17 ax-mp ( exp ‘ ( - 1 · ( π / 2 ) ) ) ∈ ℝ
19 14 18 eqeltri ( i ↑𝑐 i ) ∈ ℝ