| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ax-icn | ⊢ i  ∈  ℂ | 
						
							| 2 |  | ine0 | ⊢ i  ≠  0 | 
						
							| 3 |  | cxpef | ⊢ ( ( i  ∈  ℂ  ∧  i  ≠  0  ∧  i  ∈  ℂ )  →  ( i ↑𝑐 i )  =  ( exp ‘ ( i  ·  ( log ‘ i ) ) ) ) | 
						
							| 4 | 1 2 1 3 | mp3an | ⊢ ( i ↑𝑐 i )  =  ( exp ‘ ( i  ·  ( log ‘ i ) ) ) | 
						
							| 5 |  | logi | ⊢ ( log ‘ i )  =  ( i  ·  ( π  /  2 ) ) | 
						
							| 6 | 5 | oveq2i | ⊢ ( i  ·  ( log ‘ i ) )  =  ( i  ·  ( i  ·  ( π  /  2 ) ) ) | 
						
							| 7 |  | halfpire | ⊢ ( π  /  2 )  ∈  ℝ | 
						
							| 8 | 7 | recni | ⊢ ( π  /  2 )  ∈  ℂ | 
						
							| 9 | 1 1 8 | mulassi | ⊢ ( ( i  ·  i )  ·  ( π  /  2 ) )  =  ( i  ·  ( i  ·  ( π  /  2 ) ) ) | 
						
							| 10 |  | ixi | ⊢ ( i  ·  i )  =  - 1 | 
						
							| 11 | 10 | oveq1i | ⊢ ( ( i  ·  i )  ·  ( π  /  2 ) )  =  ( - 1  ·  ( π  /  2 ) ) | 
						
							| 12 | 6 9 11 | 3eqtr2i | ⊢ ( i  ·  ( log ‘ i ) )  =  ( - 1  ·  ( π  /  2 ) ) | 
						
							| 13 | 12 | fveq2i | ⊢ ( exp ‘ ( i  ·  ( log ‘ i ) ) )  =  ( exp ‘ ( - 1  ·  ( π  /  2 ) ) ) | 
						
							| 14 | 4 13 | eqtri | ⊢ ( i ↑𝑐 i )  =  ( exp ‘ ( - 1  ·  ( π  /  2 ) ) ) | 
						
							| 15 |  | neg1rr | ⊢ - 1  ∈  ℝ | 
						
							| 16 | 15 7 | remulcli | ⊢ ( - 1  ·  ( π  /  2 ) )  ∈  ℝ | 
						
							| 17 |  | reefcl | ⊢ ( ( - 1  ·  ( π  /  2 ) )  ∈  ℝ  →  ( exp ‘ ( - 1  ·  ( π  /  2 ) ) )  ∈  ℝ ) | 
						
							| 18 | 16 17 | ax-mp | ⊢ ( exp ‘ ( - 1  ·  ( π  /  2 ) ) )  ∈  ℝ | 
						
							| 19 | 14 18 | eqeltri | ⊢ ( i ↑𝑐 i )  ∈  ℝ |