| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ax-icn |  |-  _i e. CC | 
						
							| 2 |  | ine0 |  |-  _i =/= 0 | 
						
							| 3 |  | cxpef |  |-  ( ( _i e. CC /\ _i =/= 0 /\ _i e. CC ) -> ( _i ^c _i ) = ( exp ` ( _i x. ( log ` _i ) ) ) ) | 
						
							| 4 | 1 2 1 3 | mp3an |  |-  ( _i ^c _i ) = ( exp ` ( _i x. ( log ` _i ) ) ) | 
						
							| 5 |  | logi |  |-  ( log ` _i ) = ( _i x. ( _pi / 2 ) ) | 
						
							| 6 | 5 | oveq2i |  |-  ( _i x. ( log ` _i ) ) = ( _i x. ( _i x. ( _pi / 2 ) ) ) | 
						
							| 7 |  | halfpire |  |-  ( _pi / 2 ) e. RR | 
						
							| 8 | 7 | recni |  |-  ( _pi / 2 ) e. CC | 
						
							| 9 | 1 1 8 | mulassi |  |-  ( ( _i x. _i ) x. ( _pi / 2 ) ) = ( _i x. ( _i x. ( _pi / 2 ) ) ) | 
						
							| 10 |  | ixi |  |-  ( _i x. _i ) = -u 1 | 
						
							| 11 | 10 | oveq1i |  |-  ( ( _i x. _i ) x. ( _pi / 2 ) ) = ( -u 1 x. ( _pi / 2 ) ) | 
						
							| 12 | 6 9 11 | 3eqtr2i |  |-  ( _i x. ( log ` _i ) ) = ( -u 1 x. ( _pi / 2 ) ) | 
						
							| 13 | 12 | fveq2i |  |-  ( exp ` ( _i x. ( log ` _i ) ) ) = ( exp ` ( -u 1 x. ( _pi / 2 ) ) ) | 
						
							| 14 | 4 13 | eqtri |  |-  ( _i ^c _i ) = ( exp ` ( -u 1 x. ( _pi / 2 ) ) ) | 
						
							| 15 |  | neg1rr |  |-  -u 1 e. RR | 
						
							| 16 | 15 7 | remulcli |  |-  ( -u 1 x. ( _pi / 2 ) ) e. RR | 
						
							| 17 |  | reefcl |  |-  ( ( -u 1 x. ( _pi / 2 ) ) e. RR -> ( exp ` ( -u 1 x. ( _pi / 2 ) ) ) e. RR ) | 
						
							| 18 | 16 17 | ax-mp |  |-  ( exp ` ( -u 1 x. ( _pi / 2 ) ) ) e. RR | 
						
							| 19 | 14 18 | eqeltri |  |-  ( _i ^c _i ) e. RR |