| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ax-icn |
|- _i e. CC |
| 2 |
|
ine0 |
|- _i =/= 0 |
| 3 |
|
cxpef |
|- ( ( _i e. CC /\ _i =/= 0 /\ _i e. CC ) -> ( _i ^c _i ) = ( exp ` ( _i x. ( log ` _i ) ) ) ) |
| 4 |
1 2 1 3
|
mp3an |
|- ( _i ^c _i ) = ( exp ` ( _i x. ( log ` _i ) ) ) |
| 5 |
|
logi |
|- ( log ` _i ) = ( _i x. ( _pi / 2 ) ) |
| 6 |
5
|
oveq2i |
|- ( _i x. ( log ` _i ) ) = ( _i x. ( _i x. ( _pi / 2 ) ) ) |
| 7 |
|
halfpire |
|- ( _pi / 2 ) e. RR |
| 8 |
7
|
recni |
|- ( _pi / 2 ) e. CC |
| 9 |
1 1 8
|
mulassi |
|- ( ( _i x. _i ) x. ( _pi / 2 ) ) = ( _i x. ( _i x. ( _pi / 2 ) ) ) |
| 10 |
|
ixi |
|- ( _i x. _i ) = -u 1 |
| 11 |
10
|
oveq1i |
|- ( ( _i x. _i ) x. ( _pi / 2 ) ) = ( -u 1 x. ( _pi / 2 ) ) |
| 12 |
6 9 11
|
3eqtr2i |
|- ( _i x. ( log ` _i ) ) = ( -u 1 x. ( _pi / 2 ) ) |
| 13 |
12
|
fveq2i |
|- ( exp ` ( _i x. ( log ` _i ) ) ) = ( exp ` ( -u 1 x. ( _pi / 2 ) ) ) |
| 14 |
4 13
|
eqtri |
|- ( _i ^c _i ) = ( exp ` ( -u 1 x. ( _pi / 2 ) ) ) |
| 15 |
|
neg1rr |
|- -u 1 e. RR |
| 16 |
15 7
|
remulcli |
|- ( -u 1 x. ( _pi / 2 ) ) e. RR |
| 17 |
|
reefcl |
|- ( ( -u 1 x. ( _pi / 2 ) ) e. RR -> ( exp ` ( -u 1 x. ( _pi / 2 ) ) ) e. RR ) |
| 18 |
16 17
|
ax-mp |
|- ( exp ` ( -u 1 x. ( _pi / 2 ) ) ) e. RR |
| 19 |
14 18
|
eqeltri |
|- ( _i ^c _i ) e. RR |