Step |
Hyp |
Ref |
Expression |
1 |
|
ax-icn |
|- _i e. CC |
2 |
|
ine0 |
|- _i =/= 0 |
3 |
|
cxpef |
|- ( ( _i e. CC /\ _i =/= 0 /\ _i e. CC ) -> ( _i ^c _i ) = ( exp ` ( _i x. ( log ` _i ) ) ) ) |
4 |
1 2 1 3
|
mp3an |
|- ( _i ^c _i ) = ( exp ` ( _i x. ( log ` _i ) ) ) |
5 |
|
logi |
|- ( log ` _i ) = ( _i x. ( _pi / 2 ) ) |
6 |
5
|
oveq2i |
|- ( _i x. ( log ` _i ) ) = ( _i x. ( _i x. ( _pi / 2 ) ) ) |
7 |
|
halfpire |
|- ( _pi / 2 ) e. RR |
8 |
7
|
recni |
|- ( _pi / 2 ) e. CC |
9 |
1 1 8
|
mulassi |
|- ( ( _i x. _i ) x. ( _pi / 2 ) ) = ( _i x. ( _i x. ( _pi / 2 ) ) ) |
10 |
|
ixi |
|- ( _i x. _i ) = -u 1 |
11 |
10
|
oveq1i |
|- ( ( _i x. _i ) x. ( _pi / 2 ) ) = ( -u 1 x. ( _pi / 2 ) ) |
12 |
6 9 11
|
3eqtr2i |
|- ( _i x. ( log ` _i ) ) = ( -u 1 x. ( _pi / 2 ) ) |
13 |
12
|
fveq2i |
|- ( exp ` ( _i x. ( log ` _i ) ) ) = ( exp ` ( -u 1 x. ( _pi / 2 ) ) ) |
14 |
4 13
|
eqtri |
|- ( _i ^c _i ) = ( exp ` ( -u 1 x. ( _pi / 2 ) ) ) |
15 |
|
neg1rr |
|- -u 1 e. RR |
16 |
15 7
|
remulcli |
|- ( -u 1 x. ( _pi / 2 ) ) e. RR |
17 |
|
reefcl |
|- ( ( -u 1 x. ( _pi / 2 ) ) e. RR -> ( exp ` ( -u 1 x. ( _pi / 2 ) ) ) e. RR ) |
18 |
16 17
|
ax-mp |
|- ( exp ` ( -u 1 x. ( _pi / 2 ) ) ) e. RR |
19 |
14 18
|
eqeltri |
|- ( _i ^c _i ) e. RR |