Step |
Hyp |
Ref |
Expression |
1 |
|
efhalfpi |
|- ( exp ` ( _i x. ( _pi / 2 ) ) ) = _i |
2 |
|
ax-icn |
|- _i e. CC |
3 |
|
ine0 |
|- _i =/= 0 |
4 |
|
halfpire |
|- ( _pi / 2 ) e. RR |
5 |
4
|
recni |
|- ( _pi / 2 ) e. CC |
6 |
2 5
|
mulcli |
|- ( _i x. ( _pi / 2 ) ) e. CC |
7 |
|
pipos |
|- 0 < _pi |
8 |
|
pire |
|- _pi e. RR |
9 |
|
lt0neg2 |
|- ( _pi e. RR -> ( 0 < _pi <-> -u _pi < 0 ) ) |
10 |
8 9
|
ax-mp |
|- ( 0 < _pi <-> -u _pi < 0 ) |
11 |
7 10
|
mpbi |
|- -u _pi < 0 |
12 |
|
halfpos2 |
|- ( _pi e. RR -> ( 0 < _pi <-> 0 < ( _pi / 2 ) ) ) |
13 |
8 12
|
ax-mp |
|- ( 0 < _pi <-> 0 < ( _pi / 2 ) ) |
14 |
7 13
|
mpbi |
|- 0 < ( _pi / 2 ) |
15 |
8
|
renegcli |
|- -u _pi e. RR |
16 |
|
0re |
|- 0 e. RR |
17 |
15 16 4
|
lttri |
|- ( ( -u _pi < 0 /\ 0 < ( _pi / 2 ) ) -> -u _pi < ( _pi / 2 ) ) |
18 |
11 14 17
|
mp2an |
|- -u _pi < ( _pi / 2 ) |
19 |
|
reim |
|- ( ( _pi / 2 ) e. CC -> ( Re ` ( _pi / 2 ) ) = ( Im ` ( _i x. ( _pi / 2 ) ) ) ) |
20 |
5 19
|
ax-mp |
|- ( Re ` ( _pi / 2 ) ) = ( Im ` ( _i x. ( _pi / 2 ) ) ) |
21 |
|
rere |
|- ( ( _pi / 2 ) e. RR -> ( Re ` ( _pi / 2 ) ) = ( _pi / 2 ) ) |
22 |
4 21
|
ax-mp |
|- ( Re ` ( _pi / 2 ) ) = ( _pi / 2 ) |
23 |
20 22
|
eqtr3i |
|- ( Im ` ( _i x. ( _pi / 2 ) ) ) = ( _pi / 2 ) |
24 |
18 23
|
breqtrri |
|- -u _pi < ( Im ` ( _i x. ( _pi / 2 ) ) ) |
25 |
8
|
a1i |
|- ( T. -> _pi e. RR ) |
26 |
25 25
|
ltaddposd |
|- ( T. -> ( 0 < _pi <-> _pi < ( _pi + _pi ) ) ) |
27 |
7 26
|
mpbii |
|- ( T. -> _pi < ( _pi + _pi ) ) |
28 |
|
picn |
|- _pi e. CC |
29 |
28
|
times2i |
|- ( _pi x. 2 ) = ( _pi + _pi ) |
30 |
27 29
|
breqtrrdi |
|- ( T. -> _pi < ( _pi x. 2 ) ) |
31 |
|
2rp |
|- 2 e. RR+ |
32 |
31
|
a1i |
|- ( T. -> 2 e. RR+ ) |
33 |
25 25 32
|
ltdivmul2d |
|- ( T. -> ( ( _pi / 2 ) < _pi <-> _pi < ( _pi x. 2 ) ) ) |
34 |
30 33
|
mpbird |
|- ( T. -> ( _pi / 2 ) < _pi ) |
35 |
34
|
mptru |
|- ( _pi / 2 ) < _pi |
36 |
4 8 35
|
ltleii |
|- ( _pi / 2 ) <_ _pi |
37 |
23 36
|
eqbrtri |
|- ( Im ` ( _i x. ( _pi / 2 ) ) ) <_ _pi |
38 |
|
ellogrn |
|- ( ( _i x. ( _pi / 2 ) ) e. ran log <-> ( ( _i x. ( _pi / 2 ) ) e. CC /\ -u _pi < ( Im ` ( _i x. ( _pi / 2 ) ) ) /\ ( Im ` ( _i x. ( _pi / 2 ) ) ) <_ _pi ) ) |
39 |
6 24 37 38
|
mpbir3an |
|- ( _i x. ( _pi / 2 ) ) e. ran log |
40 |
|
logeftb |
|- ( ( _i e. CC /\ _i =/= 0 /\ ( _i x. ( _pi / 2 ) ) e. ran log ) -> ( ( log ` _i ) = ( _i x. ( _pi / 2 ) ) <-> ( exp ` ( _i x. ( _pi / 2 ) ) ) = _i ) ) |
41 |
2 3 39 40
|
mp3an |
|- ( ( log ` _i ) = ( _i x. ( _pi / 2 ) ) <-> ( exp ` ( _i x. ( _pi / 2 ) ) ) = _i ) |
42 |
1 41
|
mpbir |
|- ( log ` _i ) = ( _i x. ( _pi / 2 ) ) |