Metamath Proof Explorer


Theorem climlec3

Description: Comparison of a constant to the limit of a sequence. (Contributed by Scott Fenton, 5-Jan-2018)

Ref Expression
Hypotheses climlec3.1 Z = M
climlec3.2 φ M
climlec3.3 φ B
climlec3.4 φ F A
climlec3.5 φ k Z F k
climlec3.6 φ k Z F k B
Assertion climlec3 φ A B

Proof

Step Hyp Ref Expression
1 climlec3.1 Z = M
2 climlec3.2 φ M
3 climlec3.3 φ B
4 climlec3.4 φ F A
5 climlec3.5 φ k Z F k
6 climlec3.6 φ k Z F k B
7 3 renegcld φ B
8 0cnd φ 0
9 1 fvexi Z V
10 9 mptex m Z F m V
11 10 a1i φ m Z F m V
12 5 recnd φ k Z F k
13 eqid m Z F m = m Z F m
14 fveq2 m = k F m = F k
15 14 negeqd m = k F m = F k
16 simpr φ k Z k Z
17 5 renegcld φ k Z F k
18 13 15 16 17 fvmptd3 φ k Z m Z F m k = F k
19 df-neg F k = 0 F k
20 18 19 eqtrdi φ k Z m Z F m k = 0 F k
21 1 2 4 8 11 12 20 climsubc2 φ m Z F m 0 A
22 df-neg A = 0 A
23 21 22 breqtrrdi φ m Z F m A
24 18 17 eqeltrd φ k Z m Z F m k
25 3 adantr φ k Z B
26 5 25 lenegd φ k Z F k B B F k
27 6 26 mpbid φ k Z B F k
28 27 18 breqtrrd φ k Z B m Z F m k
29 1 2 7 23 24 28 climlec2 φ B A
30 1 2 4 5 climrecl φ A
31 30 3 lenegd φ A B B A
32 29 31 mpbird φ A B