Step |
Hyp |
Ref |
Expression |
1 |
|
climlec3.1 |
|- Z = ( ZZ>= ` M ) |
2 |
|
climlec3.2 |
|- ( ph -> M e. ZZ ) |
3 |
|
climlec3.3 |
|- ( ph -> B e. RR ) |
4 |
|
climlec3.4 |
|- ( ph -> F ~~> A ) |
5 |
|
climlec3.5 |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) e. RR ) |
6 |
|
climlec3.6 |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) <_ B ) |
7 |
3
|
renegcld |
|- ( ph -> -u B e. RR ) |
8 |
|
0cnd |
|- ( ph -> 0 e. CC ) |
9 |
1
|
fvexi |
|- Z e. _V |
10 |
9
|
mptex |
|- ( m e. Z |-> -u ( F ` m ) ) e. _V |
11 |
10
|
a1i |
|- ( ph -> ( m e. Z |-> -u ( F ` m ) ) e. _V ) |
12 |
5
|
recnd |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) |
13 |
|
eqid |
|- ( m e. Z |-> -u ( F ` m ) ) = ( m e. Z |-> -u ( F ` m ) ) |
14 |
|
fveq2 |
|- ( m = k -> ( F ` m ) = ( F ` k ) ) |
15 |
14
|
negeqd |
|- ( m = k -> -u ( F ` m ) = -u ( F ` k ) ) |
16 |
|
simpr |
|- ( ( ph /\ k e. Z ) -> k e. Z ) |
17 |
5
|
renegcld |
|- ( ( ph /\ k e. Z ) -> -u ( F ` k ) e. RR ) |
18 |
13 15 16 17
|
fvmptd3 |
|- ( ( ph /\ k e. Z ) -> ( ( m e. Z |-> -u ( F ` m ) ) ` k ) = -u ( F ` k ) ) |
19 |
|
df-neg |
|- -u ( F ` k ) = ( 0 - ( F ` k ) ) |
20 |
18 19
|
eqtrdi |
|- ( ( ph /\ k e. Z ) -> ( ( m e. Z |-> -u ( F ` m ) ) ` k ) = ( 0 - ( F ` k ) ) ) |
21 |
1 2 4 8 11 12 20
|
climsubc2 |
|- ( ph -> ( m e. Z |-> -u ( F ` m ) ) ~~> ( 0 - A ) ) |
22 |
|
df-neg |
|- -u A = ( 0 - A ) |
23 |
21 22
|
breqtrrdi |
|- ( ph -> ( m e. Z |-> -u ( F ` m ) ) ~~> -u A ) |
24 |
18 17
|
eqeltrd |
|- ( ( ph /\ k e. Z ) -> ( ( m e. Z |-> -u ( F ` m ) ) ` k ) e. RR ) |
25 |
3
|
adantr |
|- ( ( ph /\ k e. Z ) -> B e. RR ) |
26 |
5 25
|
lenegd |
|- ( ( ph /\ k e. Z ) -> ( ( F ` k ) <_ B <-> -u B <_ -u ( F ` k ) ) ) |
27 |
6 26
|
mpbid |
|- ( ( ph /\ k e. Z ) -> -u B <_ -u ( F ` k ) ) |
28 |
27 18
|
breqtrrd |
|- ( ( ph /\ k e. Z ) -> -u B <_ ( ( m e. Z |-> -u ( F ` m ) ) ` k ) ) |
29 |
1 2 7 23 24 28
|
climlec2 |
|- ( ph -> -u B <_ -u A ) |
30 |
1 2 4 5
|
climrecl |
|- ( ph -> A e. RR ) |
31 |
30 3
|
lenegd |
|- ( ph -> ( A <_ B <-> -u B <_ -u A ) ) |
32 |
29 31
|
mpbird |
|- ( ph -> A <_ B ) |