| Step |
Hyp |
Ref |
Expression |
| 1 |
|
divcnvlin.1 |
|
| 2 |
|
divcnvlin.2 |
|
| 3 |
|
divcnvlin.3 |
|
| 4 |
|
divcnvlin.4 |
|
| 5 |
|
divcnvlin.5 |
|
| 6 |
|
divcnvlin.6 |
|
| 7 |
|
nncn |
|
| 8 |
7
|
adantl |
|
| 9 |
4
|
zcnd |
|
| 10 |
3 9
|
subcld |
|
| 11 |
10
|
adantr |
|
| 12 |
|
nnne0 |
|
| 13 |
12
|
adantl |
|
| 14 |
8 11 8 13
|
divdird |
|
| 15 |
8 13
|
dividd |
|
| 16 |
15
|
oveq1d |
|
| 17 |
14 16
|
eqtrd |
|
| 18 |
17
|
mpteq2dva |
|
| 19 |
|
nnuz |
|
| 20 |
|
1zzd |
|
| 21 |
|
divcnv |
|
| 22 |
10 21
|
syl |
|
| 23 |
|
1cnd |
|
| 24 |
|
nnex |
|
| 25 |
24
|
mptex |
|
| 26 |
25
|
a1i |
|
| 27 |
11 8 13
|
divcld |
|
| 28 |
27
|
fmpttd |
|
| 29 |
28
|
ffvelcdmda |
|
| 30 |
|
oveq2 |
|
| 31 |
30
|
oveq2d |
|
| 32 |
|
eqid |
|
| 33 |
|
ovex |
|
| 34 |
31 32 33
|
fvmpt |
|
| 35 |
|
eqid |
|
| 36 |
|
ovex |
|
| 37 |
30 35 36
|
fvmpt |
|
| 38 |
37
|
oveq2d |
|
| 39 |
34 38
|
eqtr4d |
|
| 40 |
39
|
adantl |
|
| 41 |
19 20 22 23 26 29 40
|
climaddc2 |
|
| 42 |
18 41
|
eqbrtrd |
|
| 43 |
|
nnssz |
|
| 44 |
|
resmpt |
|
| 45 |
43 44
|
ax-mp |
|
| 46 |
19
|
reseq2i |
|
| 47 |
45 46
|
eqtr3i |
|
| 48 |
|
1p0e1 |
|
| 49 |
47 48
|
breq12i |
|
| 50 |
|
1z |
|
| 51 |
|
zex |
|
| 52 |
51
|
mptex |
|
| 53 |
|
climres |
|
| 54 |
50 52 53
|
mp2an |
|
| 55 |
49 54
|
bitri |
|
| 56 |
42 55
|
sylib |
|
| 57 |
52
|
a1i |
|
| 58 |
|
eluzelz |
|
| 59 |
58 1
|
eleq2s |
|
| 60 |
59
|
zcnd |
|
| 61 |
60
|
adantl |
|
| 62 |
4
|
adantr |
|
| 63 |
62
|
zcnd |
|
| 64 |
3
|
adantr |
|
| 65 |
61 63 64
|
ppncand |
|
| 66 |
65
|
oveq1d |
|
| 67 |
59
|
adantl |
|
| 68 |
67 62
|
zaddcld |
|
| 69 |
|
oveq1 |
|
| 70 |
|
id |
|
| 71 |
69 70
|
oveq12d |
|
| 72 |
|
eqid |
|
| 73 |
|
ovex |
|
| 74 |
71 72 73
|
fvmpt |
|
| 75 |
68 74
|
syl |
|
| 76 |
66 75 6
|
3eqtr4d |
|
| 77 |
1 2 4 5 57 76
|
climshft2 |
|
| 78 |
56 77
|
mpbird |
|