Metamath Proof Explorer


Theorem divcnvlin

Description: Limit of the ratio of two linear functions. (Contributed by Scott Fenton, 17-Dec-2017)

Ref Expression
Hypotheses divcnvlin.1 Z = M
divcnvlin.2 φ M
divcnvlin.3 φ A
divcnvlin.4 φ B
divcnvlin.5 φ F V
divcnvlin.6 φ k Z F k = k + A k + B
Assertion divcnvlin φ F 1

Proof

Step Hyp Ref Expression
1 divcnvlin.1 Z = M
2 divcnvlin.2 φ M
3 divcnvlin.3 φ A
4 divcnvlin.4 φ B
5 divcnvlin.5 φ F V
6 divcnvlin.6 φ k Z F k = k + A k + B
7 nncn m m
8 7 adantl φ m m
9 4 zcnd φ B
10 3 9 subcld φ A B
11 10 adantr φ m A B
12 nnne0 m m 0
13 12 adantl φ m m 0
14 8 11 8 13 divdird φ m m + A - B m = m m + A B m
15 8 13 dividd φ m m m = 1
16 15 oveq1d φ m m m + A B m = 1 + A B m
17 14 16 eqtrd φ m m + A - B m = 1 + A B m
18 17 mpteq2dva φ m m + A - B m = m 1 + A B m
19 nnuz = 1
20 1zzd φ 1
21 divcnv A B m A B m 0
22 10 21 syl φ m A B m 0
23 1cnd φ 1
24 nnex V
25 24 mptex m 1 + A B m V
26 25 a1i φ m 1 + A B m V
27 11 8 13 divcld φ m A B m
28 27 fmpttd φ m A B m :
29 28 ffvelrnda φ k m A B m k
30 oveq2 m = k A B m = A B k
31 30 oveq2d m = k 1 + A B m = 1 + A B k
32 eqid m 1 + A B m = m 1 + A B m
33 ovex 1 + A B k V
34 31 32 33 fvmpt k m 1 + A B m k = 1 + A B k
35 eqid m A B m = m A B m
36 ovex A B k V
37 30 35 36 fvmpt k m A B m k = A B k
38 37 oveq2d k 1 + m A B m k = 1 + A B k
39 34 38 eqtr4d k m 1 + A B m k = 1 + m A B m k
40 39 adantl φ k m 1 + A B m k = 1 + m A B m k
41 19 20 22 23 26 29 40 climaddc2 φ m 1 + A B m 1 + 0
42 18 41 eqbrtrd φ m m + A - B m 1 + 0
43 nnssz
44 resmpt m m + A - B m = m m + A - B m
45 43 44 ax-mp m m + A - B m = m m + A - B m
46 19 reseq2i m m + A - B m = m m + A - B m 1
47 45 46 eqtr3i m m + A - B m = m m + A - B m 1
48 1p0e1 1 + 0 = 1
49 47 48 breq12i m m + A - B m 1 + 0 m m + A - B m 1 1
50 1z 1
51 zex V
52 51 mptex m m + A - B m V
53 climres 1 m m + A - B m V m m + A - B m 1 1 m m + A - B m 1
54 50 52 53 mp2an m m + A - B m 1 1 m m + A - B m 1
55 49 54 bitri m m + A - B m 1 + 0 m m + A - B m 1
56 42 55 sylib φ m m + A - B m 1
57 52 a1i φ m m + A - B m V
58 eluzelz k M k
59 58 1 eleq2s k Z k
60 59 zcnd k Z k
61 60 adantl φ k Z k
62 4 adantr φ k Z B
63 62 zcnd φ k Z B
64 3 adantr φ k Z A
65 61 63 64 ppncand φ k Z k + B + A B = k + A
66 65 oveq1d φ k Z k + B + A B k + B = k + A k + B
67 59 adantl φ k Z k
68 67 62 zaddcld φ k Z k + B
69 oveq1 m = k + B m + A - B = k + B + A B
70 id m = k + B m = k + B
71 69 70 oveq12d m = k + B m + A - B m = k + B + A B k + B
72 eqid m m + A - B m = m m + A - B m
73 ovex k + B + A B k + B V
74 71 72 73 fvmpt k + B m m + A - B m k + B = k + B + A B k + B
75 68 74 syl φ k Z m m + A - B m k + B = k + B + A B k + B
76 66 75 6 3eqtr4d φ k Z m m + A - B m k + B = F k
77 1 2 4 5 57 76 climshft2 φ F 1 m m + A - B m 1
78 56 77 mpbird φ F 1