Step |
Hyp |
Ref |
Expression |
1 |
|
divcnvlin.1 |
|
2 |
|
divcnvlin.2 |
|
3 |
|
divcnvlin.3 |
|
4 |
|
divcnvlin.4 |
|
5 |
|
divcnvlin.5 |
|
6 |
|
divcnvlin.6 |
|
7 |
|
nncn |
|
8 |
7
|
adantl |
|
9 |
4
|
zcnd |
|
10 |
3 9
|
subcld |
|
11 |
10
|
adantr |
|
12 |
|
nnne0 |
|
13 |
12
|
adantl |
|
14 |
8 11 8 13
|
divdird |
|
15 |
8 13
|
dividd |
|
16 |
15
|
oveq1d |
|
17 |
14 16
|
eqtrd |
|
18 |
17
|
mpteq2dva |
|
19 |
|
nnuz |
|
20 |
|
1zzd |
|
21 |
|
divcnv |
|
22 |
10 21
|
syl |
|
23 |
|
1cnd |
|
24 |
|
nnex |
|
25 |
24
|
mptex |
|
26 |
25
|
a1i |
|
27 |
11 8 13
|
divcld |
|
28 |
27
|
fmpttd |
|
29 |
28
|
ffvelrnda |
|
30 |
|
oveq2 |
|
31 |
30
|
oveq2d |
|
32 |
|
eqid |
|
33 |
|
ovex |
|
34 |
31 32 33
|
fvmpt |
|
35 |
|
eqid |
|
36 |
|
ovex |
|
37 |
30 35 36
|
fvmpt |
|
38 |
37
|
oveq2d |
|
39 |
34 38
|
eqtr4d |
|
40 |
39
|
adantl |
|
41 |
19 20 22 23 26 29 40
|
climaddc2 |
|
42 |
18 41
|
eqbrtrd |
|
43 |
|
nnssz |
|
44 |
|
resmpt |
|
45 |
43 44
|
ax-mp |
|
46 |
19
|
reseq2i |
|
47 |
45 46
|
eqtr3i |
|
48 |
|
1p0e1 |
|
49 |
47 48
|
breq12i |
|
50 |
|
1z |
|
51 |
|
zex |
|
52 |
51
|
mptex |
|
53 |
|
climres |
|
54 |
50 52 53
|
mp2an |
|
55 |
49 54
|
bitri |
|
56 |
42 55
|
sylib |
|
57 |
52
|
a1i |
|
58 |
|
eluzelz |
|
59 |
58 1
|
eleq2s |
|
60 |
59
|
zcnd |
|
61 |
60
|
adantl |
|
62 |
4
|
adantr |
|
63 |
62
|
zcnd |
|
64 |
3
|
adantr |
|
65 |
61 63 64
|
ppncand |
|
66 |
65
|
oveq1d |
|
67 |
59
|
adantl |
|
68 |
67 62
|
zaddcld |
|
69 |
|
oveq1 |
|
70 |
|
id |
|
71 |
69 70
|
oveq12d |
|
72 |
|
eqid |
|
73 |
|
ovex |
|
74 |
71 72 73
|
fvmpt |
|
75 |
68 74
|
syl |
|
76 |
66 75 6
|
3eqtr4d |
|
77 |
1 2 4 5 57 76
|
climshft2 |
|
78 |
56 77
|
mpbird |
|