Metamath Proof Explorer


Theorem fz0n

Description: The sequence ( 0 ... ( N - 1 ) ) is empty iff N is zero. (Contributed by Scott Fenton, 16-May-2014)

Ref Expression
Assertion fz0n N 0 0 N 1 = N = 0

Proof

Step Hyp Ref Expression
1 0z 0
2 nn0z N 0 N
3 peano2zm N N 1
4 2 3 syl N 0 N 1
5 fzn 0 N 1 N 1 < 0 0 N 1 =
6 1 4 5 sylancr N 0 N 1 < 0 0 N 1 =
7 elnn0 N 0 N N = 0
8 nnge1 N 1 N
9 nnre N N
10 1re 1
11 subge0 N 1 0 N 1 1 N
12 0re 0
13 resubcl N 1 N 1
14 lenlt 0 N 1 0 N 1 ¬ N 1 < 0
15 12 13 14 sylancr N 1 0 N 1 ¬ N 1 < 0
16 11 15 bitr3d N 1 1 N ¬ N 1 < 0
17 9 10 16 sylancl N 1 N ¬ N 1 < 0
18 8 17 mpbid N ¬ N 1 < 0
19 nnne0 N N 0
20 19 neneqd N ¬ N = 0
21 18 20 2falsed N N 1 < 0 N = 0
22 oveq1 N = 0 N 1 = 0 1
23 df-neg 1 = 0 1
24 22 23 eqtr4di N = 0 N 1 = 1
25 neg1lt0 1 < 0
26 24 25 eqbrtrdi N = 0 N 1 < 0
27 id N = 0 N = 0
28 26 27 2thd N = 0 N 1 < 0 N = 0
29 21 28 jaoi N N = 0 N 1 < 0 N = 0
30 7 29 sylbi N 0 N 1 < 0 N = 0
31 6 30 bitr3d N 0 0 N 1 = N = 0