| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0z |  |-  0 e. ZZ | 
						
							| 2 |  | nn0z |  |-  ( N e. NN0 -> N e. ZZ ) | 
						
							| 3 |  | peano2zm |  |-  ( N e. ZZ -> ( N - 1 ) e. ZZ ) | 
						
							| 4 | 2 3 | syl |  |-  ( N e. NN0 -> ( N - 1 ) e. ZZ ) | 
						
							| 5 |  | fzn |  |-  ( ( 0 e. ZZ /\ ( N - 1 ) e. ZZ ) -> ( ( N - 1 ) < 0 <-> ( 0 ... ( N - 1 ) ) = (/) ) ) | 
						
							| 6 | 1 4 5 | sylancr |  |-  ( N e. NN0 -> ( ( N - 1 ) < 0 <-> ( 0 ... ( N - 1 ) ) = (/) ) ) | 
						
							| 7 |  | elnn0 |  |-  ( N e. NN0 <-> ( N e. NN \/ N = 0 ) ) | 
						
							| 8 |  | nnge1 |  |-  ( N e. NN -> 1 <_ N ) | 
						
							| 9 |  | nnre |  |-  ( N e. NN -> N e. RR ) | 
						
							| 10 |  | 1re |  |-  1 e. RR | 
						
							| 11 |  | subge0 |  |-  ( ( N e. RR /\ 1 e. RR ) -> ( 0 <_ ( N - 1 ) <-> 1 <_ N ) ) | 
						
							| 12 |  | 0re |  |-  0 e. RR | 
						
							| 13 |  | resubcl |  |-  ( ( N e. RR /\ 1 e. RR ) -> ( N - 1 ) e. RR ) | 
						
							| 14 |  | lenlt |  |-  ( ( 0 e. RR /\ ( N - 1 ) e. RR ) -> ( 0 <_ ( N - 1 ) <-> -. ( N - 1 ) < 0 ) ) | 
						
							| 15 | 12 13 14 | sylancr |  |-  ( ( N e. RR /\ 1 e. RR ) -> ( 0 <_ ( N - 1 ) <-> -. ( N - 1 ) < 0 ) ) | 
						
							| 16 | 11 15 | bitr3d |  |-  ( ( N e. RR /\ 1 e. RR ) -> ( 1 <_ N <-> -. ( N - 1 ) < 0 ) ) | 
						
							| 17 | 9 10 16 | sylancl |  |-  ( N e. NN -> ( 1 <_ N <-> -. ( N - 1 ) < 0 ) ) | 
						
							| 18 | 8 17 | mpbid |  |-  ( N e. NN -> -. ( N - 1 ) < 0 ) | 
						
							| 19 |  | nnne0 |  |-  ( N e. NN -> N =/= 0 ) | 
						
							| 20 | 19 | neneqd |  |-  ( N e. NN -> -. N = 0 ) | 
						
							| 21 | 18 20 | 2falsed |  |-  ( N e. NN -> ( ( N - 1 ) < 0 <-> N = 0 ) ) | 
						
							| 22 |  | oveq1 |  |-  ( N = 0 -> ( N - 1 ) = ( 0 - 1 ) ) | 
						
							| 23 |  | df-neg |  |-  -u 1 = ( 0 - 1 ) | 
						
							| 24 | 22 23 | eqtr4di |  |-  ( N = 0 -> ( N - 1 ) = -u 1 ) | 
						
							| 25 |  | neg1lt0 |  |-  -u 1 < 0 | 
						
							| 26 | 24 25 | eqbrtrdi |  |-  ( N = 0 -> ( N - 1 ) < 0 ) | 
						
							| 27 |  | id |  |-  ( N = 0 -> N = 0 ) | 
						
							| 28 | 26 27 | 2thd |  |-  ( N = 0 -> ( ( N - 1 ) < 0 <-> N = 0 ) ) | 
						
							| 29 | 21 28 | jaoi |  |-  ( ( N e. NN \/ N = 0 ) -> ( ( N - 1 ) < 0 <-> N = 0 ) ) | 
						
							| 30 | 7 29 | sylbi |  |-  ( N e. NN0 -> ( ( N - 1 ) < 0 <-> N = 0 ) ) | 
						
							| 31 | 6 30 | bitr3d |  |-  ( N e. NN0 -> ( ( 0 ... ( N - 1 ) ) = (/) <-> N = 0 ) ) |