| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0z |
|- 0 e. ZZ |
| 2 |
|
nn0z |
|- ( N e. NN0 -> N e. ZZ ) |
| 3 |
|
peano2zm |
|- ( N e. ZZ -> ( N - 1 ) e. ZZ ) |
| 4 |
2 3
|
syl |
|- ( N e. NN0 -> ( N - 1 ) e. ZZ ) |
| 5 |
|
fzn |
|- ( ( 0 e. ZZ /\ ( N - 1 ) e. ZZ ) -> ( ( N - 1 ) < 0 <-> ( 0 ... ( N - 1 ) ) = (/) ) ) |
| 6 |
1 4 5
|
sylancr |
|- ( N e. NN0 -> ( ( N - 1 ) < 0 <-> ( 0 ... ( N - 1 ) ) = (/) ) ) |
| 7 |
|
elnn0 |
|- ( N e. NN0 <-> ( N e. NN \/ N = 0 ) ) |
| 8 |
|
nnge1 |
|- ( N e. NN -> 1 <_ N ) |
| 9 |
|
nnre |
|- ( N e. NN -> N e. RR ) |
| 10 |
|
1re |
|- 1 e. RR |
| 11 |
|
subge0 |
|- ( ( N e. RR /\ 1 e. RR ) -> ( 0 <_ ( N - 1 ) <-> 1 <_ N ) ) |
| 12 |
|
0re |
|- 0 e. RR |
| 13 |
|
resubcl |
|- ( ( N e. RR /\ 1 e. RR ) -> ( N - 1 ) e. RR ) |
| 14 |
|
lenlt |
|- ( ( 0 e. RR /\ ( N - 1 ) e. RR ) -> ( 0 <_ ( N - 1 ) <-> -. ( N - 1 ) < 0 ) ) |
| 15 |
12 13 14
|
sylancr |
|- ( ( N e. RR /\ 1 e. RR ) -> ( 0 <_ ( N - 1 ) <-> -. ( N - 1 ) < 0 ) ) |
| 16 |
11 15
|
bitr3d |
|- ( ( N e. RR /\ 1 e. RR ) -> ( 1 <_ N <-> -. ( N - 1 ) < 0 ) ) |
| 17 |
9 10 16
|
sylancl |
|- ( N e. NN -> ( 1 <_ N <-> -. ( N - 1 ) < 0 ) ) |
| 18 |
8 17
|
mpbid |
|- ( N e. NN -> -. ( N - 1 ) < 0 ) |
| 19 |
|
nnne0 |
|- ( N e. NN -> N =/= 0 ) |
| 20 |
19
|
neneqd |
|- ( N e. NN -> -. N = 0 ) |
| 21 |
18 20
|
2falsed |
|- ( N e. NN -> ( ( N - 1 ) < 0 <-> N = 0 ) ) |
| 22 |
|
oveq1 |
|- ( N = 0 -> ( N - 1 ) = ( 0 - 1 ) ) |
| 23 |
|
df-neg |
|- -u 1 = ( 0 - 1 ) |
| 24 |
22 23
|
eqtr4di |
|- ( N = 0 -> ( N - 1 ) = -u 1 ) |
| 25 |
|
neg1lt0 |
|- -u 1 < 0 |
| 26 |
24 25
|
eqbrtrdi |
|- ( N = 0 -> ( N - 1 ) < 0 ) |
| 27 |
|
id |
|- ( N = 0 -> N = 0 ) |
| 28 |
26 27
|
2thd |
|- ( N = 0 -> ( ( N - 1 ) < 0 <-> N = 0 ) ) |
| 29 |
21 28
|
jaoi |
|- ( ( N e. NN \/ N = 0 ) -> ( ( N - 1 ) < 0 <-> N = 0 ) ) |
| 30 |
7 29
|
sylbi |
|- ( N e. NN0 -> ( ( N - 1 ) < 0 <-> N = 0 ) ) |
| 31 |
6 30
|
bitr3d |
|- ( N e. NN0 -> ( ( 0 ... ( N - 1 ) ) = (/) <-> N = 0 ) ) |