| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zssre |
|- ZZ C_ RR |
| 2 |
|
ltso |
|- < Or RR |
| 3 |
|
soss |
|- ( ZZ C_ RR -> ( < Or RR -> < Or ZZ ) ) |
| 4 |
1 2 3
|
mp2 |
|- < Or ZZ |
| 5 |
4
|
a1i |
|- ( N e. ( ZZ>= ` M ) -> < Or ZZ ) |
| 6 |
|
eluzel2 |
|- ( N e. ( ZZ>= ` M ) -> M e. ZZ ) |
| 7 |
|
eluzfz1 |
|- ( N e. ( ZZ>= ` M ) -> M e. ( M ... N ) ) |
| 8 |
|
elfzle1 |
|- ( x e. ( M ... N ) -> M <_ x ) |
| 9 |
8
|
adantl |
|- ( ( N e. ( ZZ>= ` M ) /\ x e. ( M ... N ) ) -> M <_ x ) |
| 10 |
6
|
zred |
|- ( N e. ( ZZ>= ` M ) -> M e. RR ) |
| 11 |
|
elfzelz |
|- ( x e. ( M ... N ) -> x e. ZZ ) |
| 12 |
11
|
zred |
|- ( x e. ( M ... N ) -> x e. RR ) |
| 13 |
|
lenlt |
|- ( ( M e. RR /\ x e. RR ) -> ( M <_ x <-> -. x < M ) ) |
| 14 |
10 12 13
|
syl2an |
|- ( ( N e. ( ZZ>= ` M ) /\ x e. ( M ... N ) ) -> ( M <_ x <-> -. x < M ) ) |
| 15 |
9 14
|
mpbid |
|- ( ( N e. ( ZZ>= ` M ) /\ x e. ( M ... N ) ) -> -. x < M ) |
| 16 |
5 6 7 15
|
infmin |
|- ( N e. ( ZZ>= ` M ) -> inf ( ( M ... N ) , ZZ , < ) = M ) |