Step |
Hyp |
Ref |
Expression |
1 |
|
zssre |
⊢ ℤ ⊆ ℝ |
2 |
|
ltso |
⊢ < Or ℝ |
3 |
|
soss |
⊢ ( ℤ ⊆ ℝ → ( < Or ℝ → < Or ℤ ) ) |
4 |
1 2 3
|
mp2 |
⊢ < Or ℤ |
5 |
4
|
a1i |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → < Or ℤ ) |
6 |
|
eluzelz |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ℤ ) |
7 |
|
eluzfz2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ( 𝑀 ... 𝑁 ) ) |
8 |
|
elfzle2 |
⊢ ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → 𝑥 ≤ 𝑁 ) |
9 |
8
|
adantl |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑥 ≤ 𝑁 ) |
10 |
|
elfzelz |
⊢ ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → 𝑥 ∈ ℤ ) |
11 |
10
|
zred |
⊢ ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → 𝑥 ∈ ℝ ) |
12 |
|
eluzelre |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ℝ ) |
13 |
|
lenlt |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( 𝑥 ≤ 𝑁 ↔ ¬ 𝑁 < 𝑥 ) ) |
14 |
11 12 13
|
syl2anr |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝑥 ≤ 𝑁 ↔ ¬ 𝑁 < 𝑥 ) ) |
15 |
9 14
|
mpbid |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ¬ 𝑁 < 𝑥 ) |
16 |
5 6 7 15
|
supmax |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → sup ( ( 𝑀 ... 𝑁 ) , ℤ , < ) = 𝑁 ) |