Step |
Hyp |
Ref |
Expression |
1 |
|
sqrtval |
⊢ ( 𝐴 ∈ ℂ → ( √ ‘ 𝐴 ) = ( ℩ 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) ) |
2 |
1
|
eqcomd |
⊢ ( 𝐴 ∈ ℂ → ( ℩ 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) = ( √ ‘ 𝐴 ) ) |
3 |
|
sqrtcl |
⊢ ( 𝐴 ∈ ℂ → ( √ ‘ 𝐴 ) ∈ ℂ ) |
4 |
|
sqreu |
⊢ ( 𝐴 ∈ ℂ → ∃! 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) |
5 |
|
oveq1 |
⊢ ( 𝑥 = ( √ ‘ 𝐴 ) → ( 𝑥 ↑ 2 ) = ( ( √ ‘ 𝐴 ) ↑ 2 ) ) |
6 |
5
|
eqeq1d |
⊢ ( 𝑥 = ( √ ‘ 𝐴 ) → ( ( 𝑥 ↑ 2 ) = 𝐴 ↔ ( ( √ ‘ 𝐴 ) ↑ 2 ) = 𝐴 ) ) |
7 |
|
fveq2 |
⊢ ( 𝑥 = ( √ ‘ 𝐴 ) → ( ℜ ‘ 𝑥 ) = ( ℜ ‘ ( √ ‘ 𝐴 ) ) ) |
8 |
7
|
breq2d |
⊢ ( 𝑥 = ( √ ‘ 𝐴 ) → ( 0 ≤ ( ℜ ‘ 𝑥 ) ↔ 0 ≤ ( ℜ ‘ ( √ ‘ 𝐴 ) ) ) ) |
9 |
|
oveq2 |
⊢ ( 𝑥 = ( √ ‘ 𝐴 ) → ( i · 𝑥 ) = ( i · ( √ ‘ 𝐴 ) ) ) |
10 |
|
neleq1 |
⊢ ( ( i · 𝑥 ) = ( i · ( √ ‘ 𝐴 ) ) → ( ( i · 𝑥 ) ∉ ℝ+ ↔ ( i · ( √ ‘ 𝐴 ) ) ∉ ℝ+ ) ) |
11 |
9 10
|
syl |
⊢ ( 𝑥 = ( √ ‘ 𝐴 ) → ( ( i · 𝑥 ) ∉ ℝ+ ↔ ( i · ( √ ‘ 𝐴 ) ) ∉ ℝ+ ) ) |
12 |
6 8 11
|
3anbi123d |
⊢ ( 𝑥 = ( √ ‘ 𝐴 ) → ( ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ↔ ( ( ( √ ‘ 𝐴 ) ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ ( √ ‘ 𝐴 ) ) ∧ ( i · ( √ ‘ 𝐴 ) ) ∉ ℝ+ ) ) ) |
13 |
12
|
riota2 |
⊢ ( ( ( √ ‘ 𝐴 ) ∈ ℂ ∧ ∃! 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) → ( ( ( ( √ ‘ 𝐴 ) ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ ( √ ‘ 𝐴 ) ) ∧ ( i · ( √ ‘ 𝐴 ) ) ∉ ℝ+ ) ↔ ( ℩ 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) = ( √ ‘ 𝐴 ) ) ) |
14 |
3 4 13
|
syl2anc |
⊢ ( 𝐴 ∈ ℂ → ( ( ( ( √ ‘ 𝐴 ) ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ ( √ ‘ 𝐴 ) ) ∧ ( i · ( √ ‘ 𝐴 ) ) ∉ ℝ+ ) ↔ ( ℩ 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) = ( √ ‘ 𝐴 ) ) ) |
15 |
2 14
|
mpbird |
⊢ ( 𝐴 ∈ ℂ → ( ( ( √ ‘ 𝐴 ) ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ ( √ ‘ 𝐴 ) ) ∧ ( i · ( √ ‘ 𝐴 ) ) ∉ ℝ+ ) ) |