Metamath Proof Explorer


Theorem sqrtthlem

Description: Lemma for sqrtth . (Contributed by Mario Carneiro, 10-Jul-2013)

Ref Expression
Assertion sqrtthlem ( 𝐴 ∈ ℂ → ( ( ( √ ‘ 𝐴 ) ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ ( √ ‘ 𝐴 ) ) ∧ ( i · ( √ ‘ 𝐴 ) ) ∉ ℝ+ ) )

Proof

Step Hyp Ref Expression
1 sqrtval ( 𝐴 ∈ ℂ → ( √ ‘ 𝐴 ) = ( 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) )
2 1 eqcomd ( 𝐴 ∈ ℂ → ( 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) = ( √ ‘ 𝐴 ) )
3 sqrtcl ( 𝐴 ∈ ℂ → ( √ ‘ 𝐴 ) ∈ ℂ )
4 sqreu ( 𝐴 ∈ ℂ → ∃! 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) )
5 oveq1 ( 𝑥 = ( √ ‘ 𝐴 ) → ( 𝑥 ↑ 2 ) = ( ( √ ‘ 𝐴 ) ↑ 2 ) )
6 5 eqeq1d ( 𝑥 = ( √ ‘ 𝐴 ) → ( ( 𝑥 ↑ 2 ) = 𝐴 ↔ ( ( √ ‘ 𝐴 ) ↑ 2 ) = 𝐴 ) )
7 fveq2 ( 𝑥 = ( √ ‘ 𝐴 ) → ( ℜ ‘ 𝑥 ) = ( ℜ ‘ ( √ ‘ 𝐴 ) ) )
8 7 breq2d ( 𝑥 = ( √ ‘ 𝐴 ) → ( 0 ≤ ( ℜ ‘ 𝑥 ) ↔ 0 ≤ ( ℜ ‘ ( √ ‘ 𝐴 ) ) ) )
9 oveq2 ( 𝑥 = ( √ ‘ 𝐴 ) → ( i · 𝑥 ) = ( i · ( √ ‘ 𝐴 ) ) )
10 neleq1 ( ( i · 𝑥 ) = ( i · ( √ ‘ 𝐴 ) ) → ( ( i · 𝑥 ) ∉ ℝ+ ↔ ( i · ( √ ‘ 𝐴 ) ) ∉ ℝ+ ) )
11 9 10 syl ( 𝑥 = ( √ ‘ 𝐴 ) → ( ( i · 𝑥 ) ∉ ℝ+ ↔ ( i · ( √ ‘ 𝐴 ) ) ∉ ℝ+ ) )
12 6 8 11 3anbi123d ( 𝑥 = ( √ ‘ 𝐴 ) → ( ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ↔ ( ( ( √ ‘ 𝐴 ) ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ ( √ ‘ 𝐴 ) ) ∧ ( i · ( √ ‘ 𝐴 ) ) ∉ ℝ+ ) ) )
13 12 riota2 ( ( ( √ ‘ 𝐴 ) ∈ ℂ ∧ ∃! 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) → ( ( ( ( √ ‘ 𝐴 ) ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ ( √ ‘ 𝐴 ) ) ∧ ( i · ( √ ‘ 𝐴 ) ) ∉ ℝ+ ) ↔ ( 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) = ( √ ‘ 𝐴 ) ) )
14 3 4 13 syl2anc ( 𝐴 ∈ ℂ → ( ( ( ( √ ‘ 𝐴 ) ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ ( √ ‘ 𝐴 ) ) ∧ ( i · ( √ ‘ 𝐴 ) ) ∉ ℝ+ ) ↔ ( 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) = ( √ ‘ 𝐴 ) ) )
15 2 14 mpbird ( 𝐴 ∈ ℂ → ( ( ( √ ‘ 𝐴 ) ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ ( √ ‘ 𝐴 ) ) ∧ ( i · ( √ ‘ 𝐴 ) ) ∉ ℝ+ ) )