Metamath Proof Explorer


Theorem sqrtthlem

Description: Lemma for sqrtth . (Contributed by Mario Carneiro, 10-Jul-2013)

Ref Expression
Assertion sqrtthlem AA2=A0AiA+

Proof

Step Hyp Ref Expression
1 sqrtval AA=ιx|x2=A0xix+
2 1 eqcomd Aιx|x2=A0xix+=A
3 sqrtcl AA
4 sqreu A∃!xx2=A0xix+
5 oveq1 x=Ax2=A2
6 5 eqeq1d x=Ax2=AA2=A
7 fveq2 x=Ax=A
8 7 breq2d x=A0x0A
9 oveq2 x=Aix=iA
10 neleq1 ix=iAix+iA+
11 9 10 syl x=Aix+iA+
12 6 8 11 3anbi123d x=Ax2=A0xix+A2=A0AiA+
13 12 riota2 A∃!xx2=A0xix+A2=A0AiA+ιx|x2=A0xix+=A
14 3 4 13 syl2anc AA2=A0AiA+ιx|x2=A0xix+=A
15 2 14 mpbird AA2=A0AiA+