Metamath Proof Explorer


Theorem ssclaxsep

Description: A class that is closed under subsets models the Axiom of Separation ax-sep . Lemma II.2.4(3) of Kunen2 p. 111.

Note that, to obtain the relativization of an instance of Separation to M , the formula ph would need to be replaced with its relativization to M . However, this new formula is a valid substitution for ph , so this theorem does establish that all instances of Separation hold in M . (Contributed by Eric Schmidt, 29-Sep-2025)

Ref Expression
Assertion ssclaxsep ( ∀ 𝑧𝑀 𝒫 𝑧𝑀 → ∀ 𝑧𝑀𝑦𝑀𝑥𝑀 ( 𝑥𝑦 ↔ ( 𝑥𝑧𝜑 ) ) )

Proof

Step Hyp Ref Expression
1 ax-sep 𝑦𝑥 ( 𝑥𝑦 ↔ ( 𝑥𝑧𝜑 ) )
2 biimp ( ( 𝑥𝑦 ↔ ( 𝑥𝑧𝜑 ) ) → ( 𝑥𝑦 → ( 𝑥𝑧𝜑 ) ) )
3 simpl ( ( 𝑥𝑧𝜑 ) → 𝑥𝑧 )
4 2 3 syl6 ( ( 𝑥𝑦 ↔ ( 𝑥𝑧𝜑 ) ) → ( 𝑥𝑦𝑥𝑧 ) )
5 4 alimi ( ∀ 𝑥 ( 𝑥𝑦 ↔ ( 𝑥𝑧𝜑 ) ) → ∀ 𝑥 ( 𝑥𝑦𝑥𝑧 ) )
6 velpw ( 𝑦 ∈ 𝒫 𝑧𝑦𝑧 )
7 df-ss ( 𝑦𝑧 ↔ ∀ 𝑥 ( 𝑥𝑦𝑥𝑧 ) )
8 6 7 bitr2i ( ∀ 𝑥 ( 𝑥𝑦𝑥𝑧 ) ↔ 𝑦 ∈ 𝒫 𝑧 )
9 5 8 sylib ( ∀ 𝑥 ( 𝑥𝑦 ↔ ( 𝑥𝑧𝜑 ) ) → 𝑦 ∈ 𝒫 𝑧 )
10 ssel ( 𝒫 𝑧𝑀 → ( 𝑦 ∈ 𝒫 𝑧𝑦𝑀 ) )
11 9 10 syl5 ( 𝒫 𝑧𝑀 → ( ∀ 𝑥 ( 𝑥𝑦 ↔ ( 𝑥𝑧𝜑 ) ) → 𝑦𝑀 ) )
12 alral ( ∀ 𝑥 ( 𝑥𝑦 ↔ ( 𝑥𝑧𝜑 ) ) → ∀ 𝑥𝑀 ( 𝑥𝑦 ↔ ( 𝑥𝑧𝜑 ) ) )
13 11 12 jca2 ( 𝒫 𝑧𝑀 → ( ∀ 𝑥 ( 𝑥𝑦 ↔ ( 𝑥𝑧𝜑 ) ) → ( 𝑦𝑀 ∧ ∀ 𝑥𝑀 ( 𝑥𝑦 ↔ ( 𝑥𝑧𝜑 ) ) ) ) )
14 13 eximdv ( 𝒫 𝑧𝑀 → ( ∃ 𝑦𝑥 ( 𝑥𝑦 ↔ ( 𝑥𝑧𝜑 ) ) → ∃ 𝑦 ( 𝑦𝑀 ∧ ∀ 𝑥𝑀 ( 𝑥𝑦 ↔ ( 𝑥𝑧𝜑 ) ) ) ) )
15 1 14 mpi ( 𝒫 𝑧𝑀 → ∃ 𝑦 ( 𝑦𝑀 ∧ ∀ 𝑥𝑀 ( 𝑥𝑦 ↔ ( 𝑥𝑧𝜑 ) ) ) )
16 df-rex ( ∃ 𝑦𝑀𝑥𝑀 ( 𝑥𝑦 ↔ ( 𝑥𝑧𝜑 ) ) ↔ ∃ 𝑦 ( 𝑦𝑀 ∧ ∀ 𝑥𝑀 ( 𝑥𝑦 ↔ ( 𝑥𝑧𝜑 ) ) ) )
17 15 16 sylibr ( 𝒫 𝑧𝑀 → ∃ 𝑦𝑀𝑥𝑀 ( 𝑥𝑦 ↔ ( 𝑥𝑧𝜑 ) ) )
18 17 ralimi ( ∀ 𝑧𝑀 𝒫 𝑧𝑀 → ∀ 𝑧𝑀𝑦𝑀𝑥𝑀 ( 𝑥𝑦 ↔ ( 𝑥𝑧𝜑 ) ) )