Description: A class that is closed under subsets models the Axiom of Separation ax-sep . Lemma II.2.4(3) of Kunen2 p. 111.
Note that, to obtain the relativization of an instance of Separation to M , the formula ph would need to be replaced with its relativization to M . However, this new formula is a valid substitution for ph , so this theorem does establish that all instances of Separation hold in M . (Contributed by Eric Schmidt, 29-Sep-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | ssclaxsep | ⊢ ( ∀ 𝑧 ∈ 𝑀 𝒫 𝑧 ⊆ 𝑀 → ∀ 𝑧 ∈ 𝑀 ∃ 𝑦 ∈ 𝑀 ∀ 𝑥 ∈ 𝑀 ( 𝑥 ∈ 𝑦 ↔ ( 𝑥 ∈ 𝑧 ∧ 𝜑 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-sep | ⊢ ∃ 𝑦 ∀ 𝑥 ( 𝑥 ∈ 𝑦 ↔ ( 𝑥 ∈ 𝑧 ∧ 𝜑 ) ) | |
2 | biimp | ⊢ ( ( 𝑥 ∈ 𝑦 ↔ ( 𝑥 ∈ 𝑧 ∧ 𝜑 ) ) → ( 𝑥 ∈ 𝑦 → ( 𝑥 ∈ 𝑧 ∧ 𝜑 ) ) ) | |
3 | simpl | ⊢ ( ( 𝑥 ∈ 𝑧 ∧ 𝜑 ) → 𝑥 ∈ 𝑧 ) | |
4 | 2 3 | syl6 | ⊢ ( ( 𝑥 ∈ 𝑦 ↔ ( 𝑥 ∈ 𝑧 ∧ 𝜑 ) ) → ( 𝑥 ∈ 𝑦 → 𝑥 ∈ 𝑧 ) ) |
5 | 4 | alimi | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝑦 ↔ ( 𝑥 ∈ 𝑧 ∧ 𝜑 ) ) → ∀ 𝑥 ( 𝑥 ∈ 𝑦 → 𝑥 ∈ 𝑧 ) ) |
6 | velpw | ⊢ ( 𝑦 ∈ 𝒫 𝑧 ↔ 𝑦 ⊆ 𝑧 ) | |
7 | df-ss | ⊢ ( 𝑦 ⊆ 𝑧 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝑦 → 𝑥 ∈ 𝑧 ) ) | |
8 | 6 7 | bitr2i | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝑦 → 𝑥 ∈ 𝑧 ) ↔ 𝑦 ∈ 𝒫 𝑧 ) |
9 | 5 8 | sylib | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝑦 ↔ ( 𝑥 ∈ 𝑧 ∧ 𝜑 ) ) → 𝑦 ∈ 𝒫 𝑧 ) |
10 | ssel | ⊢ ( 𝒫 𝑧 ⊆ 𝑀 → ( 𝑦 ∈ 𝒫 𝑧 → 𝑦 ∈ 𝑀 ) ) | |
11 | 9 10 | syl5 | ⊢ ( 𝒫 𝑧 ⊆ 𝑀 → ( ∀ 𝑥 ( 𝑥 ∈ 𝑦 ↔ ( 𝑥 ∈ 𝑧 ∧ 𝜑 ) ) → 𝑦 ∈ 𝑀 ) ) |
12 | alral | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝑦 ↔ ( 𝑥 ∈ 𝑧 ∧ 𝜑 ) ) → ∀ 𝑥 ∈ 𝑀 ( 𝑥 ∈ 𝑦 ↔ ( 𝑥 ∈ 𝑧 ∧ 𝜑 ) ) ) | |
13 | 11 12 | jca2 | ⊢ ( 𝒫 𝑧 ⊆ 𝑀 → ( ∀ 𝑥 ( 𝑥 ∈ 𝑦 ↔ ( 𝑥 ∈ 𝑧 ∧ 𝜑 ) ) → ( 𝑦 ∈ 𝑀 ∧ ∀ 𝑥 ∈ 𝑀 ( 𝑥 ∈ 𝑦 ↔ ( 𝑥 ∈ 𝑧 ∧ 𝜑 ) ) ) ) ) |
14 | 13 | eximdv | ⊢ ( 𝒫 𝑧 ⊆ 𝑀 → ( ∃ 𝑦 ∀ 𝑥 ( 𝑥 ∈ 𝑦 ↔ ( 𝑥 ∈ 𝑧 ∧ 𝜑 ) ) → ∃ 𝑦 ( 𝑦 ∈ 𝑀 ∧ ∀ 𝑥 ∈ 𝑀 ( 𝑥 ∈ 𝑦 ↔ ( 𝑥 ∈ 𝑧 ∧ 𝜑 ) ) ) ) ) |
15 | 1 14 | mpi | ⊢ ( 𝒫 𝑧 ⊆ 𝑀 → ∃ 𝑦 ( 𝑦 ∈ 𝑀 ∧ ∀ 𝑥 ∈ 𝑀 ( 𝑥 ∈ 𝑦 ↔ ( 𝑥 ∈ 𝑧 ∧ 𝜑 ) ) ) ) |
16 | df-rex | ⊢ ( ∃ 𝑦 ∈ 𝑀 ∀ 𝑥 ∈ 𝑀 ( 𝑥 ∈ 𝑦 ↔ ( 𝑥 ∈ 𝑧 ∧ 𝜑 ) ) ↔ ∃ 𝑦 ( 𝑦 ∈ 𝑀 ∧ ∀ 𝑥 ∈ 𝑀 ( 𝑥 ∈ 𝑦 ↔ ( 𝑥 ∈ 𝑧 ∧ 𝜑 ) ) ) ) | |
17 | 15 16 | sylibr | ⊢ ( 𝒫 𝑧 ⊆ 𝑀 → ∃ 𝑦 ∈ 𝑀 ∀ 𝑥 ∈ 𝑀 ( 𝑥 ∈ 𝑦 ↔ ( 𝑥 ∈ 𝑧 ∧ 𝜑 ) ) ) |
18 | 17 | ralimi | ⊢ ( ∀ 𝑧 ∈ 𝑀 𝒫 𝑧 ⊆ 𝑀 → ∀ 𝑧 ∈ 𝑀 ∃ 𝑦 ∈ 𝑀 ∀ 𝑥 ∈ 𝑀 ( 𝑥 ∈ 𝑦 ↔ ( 𝑥 ∈ 𝑧 ∧ 𝜑 ) ) ) |