| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isssc.1 |
⊢ ( 𝜑 → 𝐻 Fn ( 𝑆 × 𝑆 ) ) |
| 2 |
|
dmxpid |
⊢ dom ( 𝑆 × 𝑆 ) = 𝑆 |
| 3 |
1
|
fndmd |
⊢ ( 𝜑 → dom 𝐻 = ( 𝑆 × 𝑆 ) ) |
| 4 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐻 ∈ V ) → dom 𝐻 = ( 𝑆 × 𝑆 ) ) |
| 5 |
|
dmexg |
⊢ ( 𝐻 ∈ V → dom 𝐻 ∈ V ) |
| 6 |
5
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐻 ∈ V ) → dom 𝐻 ∈ V ) |
| 7 |
4 6
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝐻 ∈ V ) → ( 𝑆 × 𝑆 ) ∈ V ) |
| 8 |
7
|
dmexd |
⊢ ( ( 𝜑 ∧ 𝐻 ∈ V ) → dom ( 𝑆 × 𝑆 ) ∈ V ) |
| 9 |
2 8
|
eqeltrrid |
⊢ ( ( 𝜑 ∧ 𝐻 ∈ V ) → 𝑆 ∈ V ) |
| 10 |
|
sqxpexg |
⊢ ( 𝑆 ∈ V → ( 𝑆 × 𝑆 ) ∈ V ) |
| 11 |
|
fnex |
⊢ ( ( 𝐻 Fn ( 𝑆 × 𝑆 ) ∧ ( 𝑆 × 𝑆 ) ∈ V ) → 𝐻 ∈ V ) |
| 12 |
1 10 11
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑆 ∈ V ) → 𝐻 ∈ V ) |
| 13 |
9 12
|
impbida |
⊢ ( 𝜑 → ( 𝐻 ∈ V ↔ 𝑆 ∈ V ) ) |