Description: Obsolete version of ssct as of 7-Dec-2024. (Contributed by Thierry Arnoux, 31-Jan-2017) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ssctOLD | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ≼ ω ) → 𝐴 ≼ ω ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ctex | ⊢ ( 𝐵 ≼ ω → 𝐵 ∈ V ) | |
| 2 | ssdomg | ⊢ ( 𝐵 ∈ V → ( 𝐴 ⊆ 𝐵 → 𝐴 ≼ 𝐵 ) ) | |
| 3 | 1 2 | syl | ⊢ ( 𝐵 ≼ ω → ( 𝐴 ⊆ 𝐵 → 𝐴 ≼ 𝐵 ) ) |
| 4 | 3 | impcom | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ≼ ω ) → 𝐴 ≼ 𝐵 ) |
| 5 | domtr | ⊢ ( ( 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ ω ) → 𝐴 ≼ ω ) | |
| 6 | 4 5 | sylancom | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ≼ ω ) → 𝐴 ≼ ω ) |